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Overview

Causality & Everyday Life, Science, Artificial Intelligence .

Causal Effect Identifiability concerns about precisely determining the
effect of intervention given information (e.g., causal assumptions and
an observational data).

General ldentifiability considers identifying a causal effect given an
arbitrary combination of observational and experimental data .

We provided a graphical necessary and sufficient condition under
which a causal effect of interest can be estimable. We devised a
sound and complete algorithm which outputs a formula for the
causal effect made with probabilities obtained from available data.
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SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))
SCM M is a 4-tuple (U, V. F, P(U))

e U={U,,...,U,} are exogenous variables;
e V={VW,..., V,} are endogenous variables;
e F={fy,..., f,} are functions determining V,

v, + fi(pa’,u’)

where PA’ C V\ {V;}, U’ C U; and
* P(U) is a joint distribution over U
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(Classic) Causal Effect Identifiability

formula f; s.t.
Px(y) - fQ(P(V))

Causal Yes
e Causal Dlagram g——» Inference

oo

evidence

e Data

arbitrary combinations?

a non-parametric assumption: no assumption on P



g-identifiability



Definition (g-ldentifiability)

Let Z = {Z;}", be a collection of sets of variables.



Definition (g-ldentifiability)
Let Z = {Z;}", be a collection of sets of variables.

Px(y) is said to be g-identifiable from P in G, if Px(y) is
uniquely computable from distributions

P={P(V|do(Z))}ze

iIn any causal model which induces ¢.
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Related Work: *-ldentifiability

Causal identifiability has been been studied in the literature:
ID An observational distribution [TP'02, SP'06, HV'06];
P(V) ql

mazl

zID A set of manipulable variables [BP'12]; =

{Pz(V)}zcz ®

mzID A collection of manipulable variables [BP'14]:
11Pz(V)tzcz )il

glD A collection of arbitrary experiments [LCB'19]:
{Pzi(v)}ZiGZ
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Algorithm for glD
We developed a two-phase algorithm w/ probability axioms & do-calculus:

1. A given query Is modified, and factorized into subqueries;
2. Each subquery is identified by one of the available distributions.

“ It FAILs only if there exists a subquery that cannot be identified by any
of the available distributions.

P‘(‘) PZ1
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C: confounded variables
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Algorithm for gID (15! phase)

function GID(@., @, 3G, 7Z)

if 3z.,@ = Z NV then > check whether a matching experiment exists

return P,y ¢ (®)

if V4 An(@)¢ then > retain only the ancestors of @

return GID(®,® N An(®)g,G[An(@)g], Z)
if ( W+ (V\e@)\ An(‘)gi) # () then

return GID(@,@eU ,G,7Z) > modify to a maximal intervention
S+ C(G\® )
if |S| > 1 then > factorize into subqueries

return ), |[g.sGID(@®, @ ,G,7Z)

forZc ZsuchthatZNnVCe@ do > identify with each of available distribution

return sUB-ID(@®,® \Z, P,wv @ 29 \(£ZN® ))if not NONE
throw FAIL

sub-ID is a simplified ID algorithm [SP’06], which returns NONE if failed.

15



Algorithm for gID (2"® phase)

function suB-ID(e@, @, Q, G)

1S}« C(G\e)

if ® = () then > check identified
return ), g Q(V)

if V£ An(@)¢ then > retain only the ancestors of @
return sue-ID(@, ® NAN(®@)g. >\ an@), Q. G[AN(®)g])

if C(G) =V then > check the existence of a hedge
return NONE

if S € C(G) then | > check identifiable
return ) g llvco Q(v,-\vgr’_”).

ifS C S €C(G) then > modify input (query, distribution, and graph)

return suB-1D(®,® NS [[ s QVIVE NS Vi V\8), )
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non-g-identifiability
— the failure condition & a prohibiting structure
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Proving Non-g-ldentifiability

To prove P(Y) is not g-identifiable from Z in G, we construct
two causal models My and M, compatible with G such that

Pl(v) = Pé(v)forallZc Z,z € Xz, but P,(y) # P(y) .

SCM M’ G SCM M?

P TN

avallable data P
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Recall the failed factor ...

%/Ac&_v___/

phase-1 phase-2

JPg (®) such that VPz, € P fails
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» X (the bad) Jhedge [SP'06],
e.g., Pc
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Thicket

Definition

Let R be a non-empty set of variables and Z be a collection of sets of
variables in G. A thicket 7 C G is an R-rooted c-component consisting of a
minimal c-component over R and hedges

g ={(Fz,JR]) [ FzC G\Z,ZNR = D}zez.

Let X, Y be disjoint sets of variables in G. A thicket 7 is said to be formed
for Py(y) in G with respect to Z if R C An(Y)g, and every hedgelet of each
hedge (Fz, J[R]) intersects with X.

23



Thicket: Drug-Drug Interactions

Given Z = {{X1},{Xe;} with Q = P(y|do(x1, x2)) (" Pg(®) = Pg(®))
* The query is not g-identifiable, see B« > Y
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Thicket: Drug-Drug Interactions

Given Z = {1 X1}, X} with Q = P(y|do(xi, x2)) (" Pg(®) = Pg(®))

e There is another hedge, which is disjoint with { X>} € Z and, again,
Intersects with X.
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glD
algOrithm PV -

FAILs

Non-g-identifiability

THICKET
exists

for P‘(‘)

non-gid non-gid
—» Pg(®) —» Px(Y)

M1&M? MV &M

_
-~

not presented in this talk

25



Conclusions

* We studied general-identifiability — causal effect indentifiability given a
causal graph and an arbitrary combination of observational and
experimental distributions.

e /' anecessary and sufficient graphical condition (3thicket?).
v/~ asound and complete algorithm

260



Conclusions

* We studied general-identifiability — causal effect indentifiability given a
causal graph and an arbitrary combination of observational and
experimental distributions.

e /' anecessary and sufficient graphical condition (3thicket?).
v/~ asound and complete algorithm

e Research Directions: finite-sample efficient formula, studying bounds
for the causal effect when not-g-identifiable, incorporating functional
assumptions, without a causal graph or partially-specified graphs.

260



We studied general-identifiability — causal effect indentifiability given a

Conclusions

causal graph and an arbitrary combination of observational and
experimental distributions.

v
v

a hecessary and sufficient graphical condition (=
a sound and complete algorithm

thicket?).

Research Directions: finite-sample efficient formula, studying bounds
for the causal effect when not-g-identifiable, incorporating functional
assumptions, without a causal graph or partially-specified graphs.

We further investigated the generalization of this work for
fransportability (data coming from heterogeneous domains) and for

conditional causal effect, e.g., Px(y|w)

(next session@Murray).
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