General Identifiability with Arbitrary Surrogate Experiments

Sanghack Lee
with Juan Correa and Elias Bareinboim

Columbia University

AAAI 2020
(presented at UAI 2019)
Overview

• **Causality** & Everyday Life, Science, Artificial Intelligence 🤖.
Overview

- **Causality** & Everyday Life, Science, Artificial Intelligence 🤖.

- **Causal Effect Identifiability** concerns about precisely determining the effect of intervention given information (e.g., causal assumptions and an observational data).
Overview

- **Causality** & Everyday Life, Science, Artificial Intelligence 🤖.

- **Causal Effect Identifiability** concerns about precisely determining the effect of intervention given information (e.g., causal assumptions and an observational data).

- **General Identifiability** considers identifying a causal effect given an arbitrary combination of observational and experimental data.
Overview

- **Causality** & Everyday Life, Science, Artificial Intelligence 🤖.

- **Causal Effect Identifiability** concerns about precisely determining the effect of intervention given information (e.g., causal assumptions and an observational data).

- **General Identifiability** considers identifying a causal effect given an arbitrary combination of observational and experimental data.

- We provided a graphical **necessary and sufficient condition** under which a causal effect of interest can be estimable. We devised a **sound and complete algorithm** which outputs a formula for the causal effect made with probabilities obtained from available data.
Understanding Data

unknown
real-world
Understanding Data

unknown

real-world

observation

X, Y, Z

experiment

unperformed

experiment
Understanding Data

unknown
real-world

observation
observation

X,Y,Z

intervention

experiment

experiment
unperformed
unperformed
Understanding Data

- **real-world**
 - **unknown**
 - **observation** X,Y,Z
 - **experiment** unperformed
 - **experiment** unperformed
Understanding Data

real-world

X Z Y
Understanding Data

real-world

X
Z
Y
Understanding Data
Understanding Data

intervention

real-world

X → Z → Y
Causal Framework

SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))

SCM \mathcal{M} is a 4-tuple $\langle U, V, F, P(U) \rangle$

- $U = \{U_1, \ldots, U_m\}$ are exogenous variables;
- $V = \{V_1, \ldots, V_n\}$ are endogenous variables;
- $F = \{f_1, \ldots, f_n\}$ are functions determining V,

 $$v_i \leftarrow f_i(pa^i, u^i)$$

 where $PA^i \subseteq V \setminus \{V_i\}$, $U^i \subseteq U$; and
- $P(U)$ is a joint distribution over U.
Causal Framework

SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))

SCM \mathcal{M} is a 4-tuple $\langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$

- $\mathbf{U} = \{U_1, \ldots, U_m\}$ are **exogenous** variables;
- $\mathbf{V} = \{V_1, \ldots, V_n\}$ are **endogenous** variables;
- $\mathbf{F} = \{f_1, \ldots, f_n\}$ are **functions** determining \mathbf{V},

 \[v_i \leftarrow f_i(pa^i, u^i) \]

 where $PA^i \subseteq \mathbf{V} \setminus \{V_i\}$, $U^i \subseteq \mathbf{U}$; and

- $P(\mathbf{U})$ is a joint **distribution** over \mathbf{U}
Causal Framework

SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))

SCM \(\mathcal{M} \) is a 4-tuple \(\langle U, V, F, P(U) \rangle \)

- \(U = \{U_1, \ldots, U_m\} \) are **exogenous** variables;
- \(V = \{V_1, \ldots, V_n\} \) are **endogenous** variables;
- \(F = \{f_1, \ldots, f_n\} \) are **functions** determining \(V \),

 \[v_i \leftarrow f_i(pa^i, u^i) \]

 where \(PA^i \subseteq V \setminus \{V_i\}, U^i \subseteq U \); and
- \(P(U) \) is a joint **distribution** over \(U \)
Causal Framework

SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))

SCM \mathcal{M} is a 4-tuple $\langle U, V, F, P(U) \rangle$

- $U = \{U_1, \ldots, U_m\}$ are **exogenous** variables;
- $V = \{V_1, \ldots, V_n\}$ are **endogenous** variables;
- $F = \{f_1, \ldots, f_n\}$ are **functions** determining V,

 $$v_i \leftarrow f_i(pa^i, u^i)$$

 where $PA^i \subseteq V \setminus \{V_i\}$, $U^i \subseteq U$; and
- $P(U)$ is a joint **distribution** over U.
Causal Framework

SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))

SCM \mathcal{M} is a 4-tuple $\langle U, V, F, P(U) \rangle$

- $U = \{U_1, \ldots, U_m\}$ are **exogenous** variables;
- $V = \{V_1, \ldots, V_n\}$ are **endogenous** variables;
- $F = \{f_1, \ldots, f_n\}$ are **functions** determining V,
 \[v_i \leftarrow f_i(\text{pa}^i, u^i) \]
 where $\text{pa}^i \subseteq V \setminus \{V_i\}$, $u^i \subseteq U$; and
- $P(U)$ is a joint **distribution** over U
Causal Framework

SCM \mathcal{M}

$\langle U, V, F, P(U) \rangle$

unknown

$P(V)$

$P_{X_1}(V)$

$P_{X_2}(V)$

$P_{X_2, X_4}(V)$

$do(\emptyset)$

$do(x_1)$

$do(x_2)$

$do(x_2, x_4)$
Causal Framework

\[P(V) \to do(\emptyset) \to do(x_1) \to do(x_2) \to do(x_2, x_4) \to P_{X_2, X_4}(V) \]

causal relationships

unknown

\[P(X_1)(V) \to P(X_2)(V) \]

[1873x39]6

Causal Framework

Do not hallucinate.
(Classic) Causal Effect Identifiability

1. Query Q
 \[P_x(y) = P(y|do(x)) \]

2. Causal Diagram \mathcal{G}

3. Data
 \[P(V) \]

A non-parametric assumption: no assumption on P
(Classic) Causal Effect Identifiability

1. Query Q

 $P_x(y) = P(y|do(x))$

2. Causal Diagram \mathcal{G}

3. Data $P(V)$

Causal Inference Engine

Formula $f_\mathcal{G}$ s.t.

$P_x(y) = f_\mathcal{G}(P(V))$

No evidence

A non-parametric assumption: no assumption on P
(Classic) Causal Effect Identifiability

1. Query Q

 $P_x(y) = P(y|do(x))$

2. Causal Diagram G

3. Data

 arbitrary combinations?

Causal Inference Engine

formula f_G s.t.

$P_x(y) = f_G(P(V))$

Yes

No

evidence

a non-parametric assumption: no assumption on P
g-identifiability
Definition (g-Identifiability)

Let $\mathcal{Z} = \{Z_i\}_{i=1}^m$ be a collection of sets of variables. $P_x(y)$ is said to be g-identifiable from \mathbb{P} in \mathcal{G}, if $P_x(y)$ is uniquely computable from distributions

$$\mathbb{P} = \{ P(V \mid do(Z_i)) \}_{z_i \in \mathcal{Z}}$$

in any causal model which induces \mathcal{G}.
Definition (g-Identifiability)

Let $\mathbb{Z} = \{Z_i\}_{i=1}^m$ be a collection of sets of variables. $P_x(y)$ is said to be **g-identifiable** from \mathbb{P} in \mathcal{G}, if $P_x(y)$ is uniquely computable from distributions

$$\mathbb{P} = \{ P(V \mid \text{do}(Z_i)) \}_{Z_i \in \mathbb{Z}}$$

in any causal model which induces \mathcal{G}.
Related Work: *-Identifiability

Causal identifiability has been studied in the literature:

ID An observational distribution [TP’02, SP’06, HV’06]:

\[P(V) \]
Related Work: *-Identifiability

Causal identifiability has been studied in the literature:

ID An observational distribution [TP’02, SP’06, HV’06]:

\[P(V) \]

zID A set of manipulable variables [BP’12]:

\[\{ P_{Z'}(V) \}_{Z' \subseteq z} \]
Related Work: *-Identifiability

Causal identifiability has been studied in the literature:

- **ID** An observational distribution [TP’02, SP’06, HV’06]:
 \[P(V) \]

- **zID** A set of manipulable variables [BP’12]:
 \[\{ P_{z_i}(V) \}_{z_i \subseteq z} \]

- **mzID** A collection of manipulable variables [BP’14]:
 \[\{ \{ P_{z_i}(V) \}_{z_i \subseteq z_i} \}_{i=1}^{m} \]
Related Work: *-Identifiability

Causal identifiability has been studied in the literature:

ID An observational distribution [TP’02, SP’06, HV’06]:

\[P(V) \]

zID A set of manipulable variables [BP’12]:

\[\{ P_{Z'_i}(V) \}_{z'_i \subseteq z} \]

mzID A collection of manipulable variables [BP’14]:

\[\{ \{ P_{Z'_i}(V) \}_{z'_i \subseteq z_i} \}_{i=1}^m \]

gID A collection of arbitrary experiments [LCB’19]:

\[\{ P_{Z_i}(V) \}_{z_i \in \mathcal{Z}} \]
Example: Drug-Drug Interactions

(a)

Y cardiovascular disease; B blood pressure; X_1 taking an antihypertensive drug; and X_2 the use of an anti-diabetic drug.
Example: Drug-Drug Interactions

\[P_{x_1,x_2}(y) \iff \{ P_{x_1}(v), P_{x_2}(v) \} \]

\(Y \) cardiovascular disease; \(B \) blood pressure; \(X_1 \) taking an antihypertensive drug; and \(X_2 \) the use of an anti-diabetic drug.

Goal: assess the effect of prescribing both treatments (\(\bullet \bullet \)) on the risk of cardiovascular diseases from individual drug experiments, either (\(\bullet \)) or (\(\bullet \)).
Example: Drug-Drug Interactions

\[
P_{X_1, X_2}(y) = \sum_b P_{X_2}(y|b) P_{X_1}(b)
\]

\(Y\) cardiovascular disease; \(B\) blood pressure; \(X_1\) taking an antihypertensive drug; and \(X_2\) the use of an anti-diabetic drug.

Goal: assess the effect of prescribing both treatments (\(\bullet \bullet\)) on the risk of cardiovascular diseases from individual drug experiments, either \(\bullet\) or \(\bigcirc\).
Example: Drug-Drug Interactions

Y cardiovascular disease; B blood pressure; X_1 taking an antihypertensive drug; and X_2 the use of an anti-diabetic drug.

Goal: assess the effect of prescribing both treatments (●●) on the risk of cardiovascular diseases from individual drug experiments, either ● or ●.
Example: Drug-Drug Interactions

\[(a) \quad \checkmark \quad \quad (b) \quad \checkmark \quad \quad (c) \quad \times \quad \quad (d) \quad \times \]

\[\begin{align*} \text{Goal:} \quad & \text{assess the effect of prescribing both treatments (σ⊙) on the risk of} \\
& \text{cardiovascular diseases from individual drug experiments, either σ or ⊙.} \end{align*} \]
g-identifiability
– a sound algorithm
Algorithm for gID

We developed a two-phase algorithm w/ probability axioms & do-calculus:

1. A given query is modified, and factorized into subqueries;
2. Each subquery is identified by one of the available distributions.
 * It FAILs only if there exists a subquery that cannot be identified by any of the available distributions.

$$Q \ P_x(y)$$
Algorithm for gID

We developed a two-phase algorithm w/ probability axioms & do-calculus:

1. A given query is modified, and factorized into subqueries;
2. Each subquery is identified by one of the available distributions.
* It FAILs only if there exists a subquery that cannot be identified by any of the available distributions.
Algorithm for gID

We developed a two-phase algorithm w/ probability axioms & do-calculus:

1. A given query is modified, and factorized into subqueries;

2. Each subquery is identified by one of the available distributions.

* It FAILs only if there exists a subquery that cannot be identified by any of the available distributions.
Algorithm for gID

We developed a two-phase algorithm w/ probability axioms & do-calculus:

1. A given query is modified, and factorized into subqueries;
2. Each subquery is identified by one of the available distributions.

* It FAILs only if there exists a subquery that cannot be identified by any of the available distributions.
visualization of the 1st phase

\[X_1 \quad X_2 \quad X_3 \]
\[Y_1 \quad Y_2 \quad Y_3 \]
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase

\[P_{x}(y) = P_{x}(\bullet) = \sum P_{x}(\bullet \bullet \bullet) \]
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase

\[\sum P_X(x) = \sum \prod_c P_{pa(c)}(c) \]

C: confounded variables
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase
visualization of the 1st phase

\[
\sum P(x) = \sum \prod P(y)
\]
Algorithm for gID (1st phase)

\begin{verbatim}
function \text{gID}(\bullet, \bullet, \mathcal{G}, \mathcal{Z})
 if \exists z \in \mathcal{Z} \bullet = z \cap V then
 return \mathcal{P}_{z \setminus V, \bullet}(\bullet)
 \text{\textgreater \hspace{1cm}} \triangleright \text{check whether a matching experiment exists}

 if V \neq \text{An}(\bullet)_{\mathcal{G}} then
 return \text{gID}(\bullet, \bullet \cap \text{An}(\bullet)_{\mathcal{G}}, \mathcal{G}[\text{An}(\bullet)_{\mathcal{G}}], \mathcal{Z})
 \text{\textgreater \hspace{1cm}} \triangleright \text{retain only the ancestors of } \bullet

 if (W \leftarrow (V \setminus \bullet) \setminus \text{An}(\bullet)_{\mathcal{G}}) \neq \emptyset then
 return \text{gID}(\bullet, \bullet \cup \bullet, \mathcal{G}, \mathcal{Z})
 \text{\textgreater \hspace{1cm}} \triangleright \text{modify to a maximal intervention}

 S \leftarrow \mathcal{C}(\mathcal{G} \setminus \bullet \bullet)
 if |S| > 1 then
 return \sum_{\bullet} \prod_{\bullet \in S} \text{gID}(\bullet, \bullet, \mathcal{G}, \mathcal{Z})
 \text{\textgreater \hspace{1cm}} \triangleright \text{factorize into subqueries}

 for Z \in \mathcal{Z} \text{ such that } Z \cap V \subseteq \bullet \bullet \text{ do}
 return \text{SUB-ID}(\bullet, \bullet \setminus Z, \mathcal{P}_{z \setminus V, \bullet \cap \mathcal{Z}}, \mathcal{G} \setminus (Z \cap \bullet \bullet)) \text{ if not } \text{NONE}

 throw \text{FAIL}
\end{verbatim}

\textsc{sub-ID} is a simplified \textsc{ID} algorithm [SP'06], which returns \text{NONE} if failed.
Algorithm for gID (2nd phase)

function sub-ID(•, •, Q, G)

\{S\} ← C(G \setminus •)

if • = ∅ then
 return \sum_{v \setminus •} Q(v)

if V ≠ An(•)_G then
 return sub-ID(•, \• \cap An(•)_G, \sum_{v \setminus An(•)_G} Q, G[An(•)_G])

if C(G) = V then
 return NONE

if S ∈ C(G) then
 return \sum_{s \setminus •} \prod_{V_i \in •} Q(v_i | V^{(i-1)}_{π}).

if S ⊈ S' ∈ C(G) then
 return sub-ID(•, \• \cap S', \prod_{V_i \in S'} Q(V_i | V^{(i-1)}_{π} \cap S', \prod_{V_i \in S'} V^{(i-1)}_{π} \setminus S'), S')

▷ check identified

▷ retain only the ancestors of •

▷ check the existence of a hedge

▷ check identifiable

▷ modify input (query, distribution, and graph)
Example: Durg-Drug Interactions

Y: heart disease, B: blood pressure, X_1, X_2: drugs

$$P_{X_1, X_2}(y)$$
Example: Durg-Drug Interactions

Y: heart disease, B: blood pressure, X_1, X_2: drugs

$$
P_{x_1,x_2}(y) = \sum_b P_{x_1,x_2}(y, b)$$
Example: Durg-Drug Interactions

Y: heart disease, B: blood pressure, X_1, X_2: drugs

$$P_{x_1,x_2}(y) = \sum_b P_{x_1,x_2}(y, b)$$

$$= \sum_b P_{x_1}(b) P_{x_2,b}(y)$$
Example: Durg-Drug Interactions

Y: heart disease, B: blood pressure, X_1, X_2: drugs

$$P_{x_1,x_2}(y) = \sum_b P_{x_1,x_2}(y, b)$$

$$= \sum_b P_{x_1}(b)P_{x_2,b}(y)$$
Example: Durg-Drug Interactions

Y: heart disease, B: blood pressure, X_1, X_2: drugs

$$P_{X_1,X_2}(y) = \sum_{b} P_{X_1,X_2}(y,b)$$

$$= \sum_{b} P_{X_1}(b)P_{X_2,b}(y)$$

$$= \sum_{b} P_{X_1}(b)P_{X_2}(y|b)$$
non-g-identifiability
– the failure condition & a prohibiting structure
To prove $P_x(y)$ is not g-identifiable from \mathcal{Z} in \mathcal{G},
Proving Non-g-Identifiability

To prove $P_x(y)$ is not g-identifiable from Z in G, we construct two causal models M_1 and M_2 compatible with G.

SCM M^1 $\xleftarrow{G} \xrightarrow{G} \xrightarrow{G}$ SCM M^2
To prove $P_x(y)$ is **not g-identifiable** from Z in G, we construct two causal models M_1 and M_2 compatible with G such that $P_{z_1}^1(v) = P_{z_1}^2(v)$ for all $Z \in \mathcal{Z}$, $z \in \mathcal{X}_Z$.

Diagram: Proving Non-g-Identifiability

SCM M_1 → G → **SCM M_2**

$P_{Z_1}(V)$ → ... → $P_{Z_n}(V)$

available data \mathcal{P}
To prove \(P_x(y) \) is **not g-identifiable** from \(Z \) in \(G \), we construct two causal models \(M_1 \) and \(M_2 \) compatible with \(G \) such that
\[P_z^1(v) = P_z^2(v) \]
for all \(Z \in \mathbb{Z}, z \in X_Z \), but
\[P_x^1(y) \neq P_x^2(y). \]
Recall the failed factor ...

\[Q \quad P_x(y) \quad \ldots \quad P_0(\bullet) \quad \ldots \quad P_{Z_1} \quad \ldots \quad P_{Z_{m-1}} \quad \ldots \quad P_{Z_m} \]

\[\exists P_0(\bullet) \text{ such that } \forall P_{Z_i} \in \mathbb{P} \text{ fails} \]
\(P_\bullet (\bullet) \) versus \(P_{Z_i} \in \mathbb{P} \) (phase-2)

There are 3 situations in identifying a factor \(P_\bullet (\bullet) \) with a distribution \(P_{Z_i} \in \mathbb{P} \).

- **3 (the good)** identified, e.g., \(P_D, P_{c, d} (e, f) = P_d (e, f | c) \)
- **7 (the ugly)** \(Z_i \) on, e.g., \(P_E, D \)
- **9 (the bad)** hedge \([SP'06]\), e.g., \(P_C, E, F \)

The original order should be: the good, the bad, and the ugly.
$P_{\greenbullet}(\bullet)$ versus $P_{Z_i} \in \mathbb{P}$ (phase-2)

There are 3 situations in identifying a factor $P_{\greenbullet}(\bullet)$ with a distribution $P_{Z_i} \in \mathbb{P}$.

- ✓ (the good) identified, e.g., P_D, $P_{c,d}(e, f) = P_d(e, f|c)$

the original order should be: the good, the bad, and the ugly.
\(P_{\circ} (\bullet) \) versus \(P_{Z_i} \in \mathbb{P} \) (phase-2)

There are 3 situations in identifying a factor \(P_{\circ} (\bullet) \) with a distribution \(P_{Z_i} \in \mathbb{P} \).

- ✓ (the good) identified,
 e.g., \(P_D, P_{c,d}(e, f) = P_{d}(e, f | c) \)

- ✗ (the ugly) \(Z_i \) on \(\bullet \),
 e.g., \(P_{E,D} \)

the original order should be: the good, the bad, and the ugly.
\(P_\bullet (\bullet) \) versus \(P_{Z_i} \in \mathbb{P} \) (phase-2)

There are 3 situations in identifying a factor \(P_\bullet (\bullet) \) with a distribution \(P_{Z_i} \in \mathbb{P} \).

- **✓ (the good)** identified,
 e.g., \(P_D, P_{c,d}(e, f) = P_d(e, f | c) \)

- **✗ (the ugly)** \(Z_i \) on \(\bullet \),
 e.g., \(P_{E,D} \)

- **✗ (the bad)** \(\exists \)hedge [SP’06],
 e.g., \(P_C \)

the original order should be: the good, the bad, and the ugly.
Failure $\Rightarrow \exists$ Thicket

- A **thicket** is the superimposition of **hedges** (the bad structure).
- (if every experiment intersects with ●, confounded ●s form a ‘degenerate thicket.’)

Hedge: a fence or boundary formed by closely growing bushes or shrubs. **Thicket**: a dense group of bushes or trees.
• A thicket is the superimposition of hedges (the bad structure).
• (if every experiment intersects with \bullet, confounded \bullets form a ‘degenerate thicket.’)
Failure $\Rightarrow \exists$ Thicket

- A **thicket** is the superimposition of **hedges** (the bad structure).
- (If every experiment intersects with \circ, confounded \circs form a ‘degenerate thicket.’)

Hedge: a fence or boundary formed by closely growing bushes or shrubs. **Thicket**: a dense group of bushes or trees.
A **thicket** is the superimposition of **hedges** (the bad structure).

(if every experiment intersects with ●, confounded ●s form a ‘degenerate thicket.’)

Hedge: a fence or boundary formed by closely growing bushes or shrubs. **Thicket**: a dense group of bushes or trees.
Definition

Let \mathbf{R} be a non-empty set of variables and \mathcal{Z} be a collection of sets of variables in \mathcal{G}. A thicket $\mathcal{J} \subseteq \mathcal{G}$ is an \mathbf{R}-rooted c-component consisting of a minimal c-component over \mathbf{R} and hedges

\[\mathcal{F}_J = \{ \langle \mathcal{F}_Z, \mathcal{J}[\mathbf{R}] \rangle \mid \mathcal{F}_Z \subseteq \mathcal{G} \setminus \mathcal{Z}, \mathcal{Z} \cap \mathbf{R} = \emptyset \}_{\mathcal{Z} \in \mathcal{Z}}. \]

Let \mathbf{X}, \mathbf{Y} be disjoint sets of variables in \mathcal{G}. A thicket \mathcal{J} is said to be formed for $P_x(y)$ in \mathcal{G} with respect to \mathcal{Z} if $\mathbf{R} \subseteq \text{An}(\mathbf{Y})_{\mathcal{G}_{\mathbf{X}}}$ and every hedgelet of each hedge $\langle \mathcal{F}_Z, \mathcal{J}[\mathbf{R}] \rangle$ intersects with \mathbf{X}.
Given $\mathbb{Z} = \{\{X_1\}, \{X_2\}\}$ with $Q = P(y|\text{do}(x_1, x_2))$ (* $P(\bullet) = P(\bullet)$)

- The query is not g-identifiable, see $B \leftarrow - \rightarrow Y$

$$P_{x_1, x_2}(y) = \sum_b P_{x_1, x_2}(y, b) = \sum_b P_{x_1, x_2}(y, b)$$
Thicket: Drug-Drug Interactions

Given \(\mathcal{Z} = \{\{X_1\}, \{X_2\}\} \) with \(Q = P(y|do(x_1, x_2)) \) (* \(P \odot (\bullet) = P \odot (\bullet) \))

- There is a hedge, which is disjoint with \(\{X_1\} \in \mathcal{Z} \), and also intersects with \(X \).

\[
P_{x_1,x_2}(y) = \sum_b P_{x_1,x_2}(y, b) = \sum_b P_{x_1,x_2}(y, b)
\]
Thicket: Drug-Drug Interactions

Given $\mathcal{Z} = \{\{X_1\}, \{X_2\}\}$ with $Q = P(y|do(x_1, x_2))$ (* $P\circ \bullet = P\bullet \circ \bullet$)

- There is another hedge, which is disjoint with $\{X_2\} \in \mathcal{Z}$ and, again, intersects with X.

$$P_{x_1, x_2}(y) = \sum_b P_{x_1, x_2}(y, b) = \sum_b P_{x_1, x_2}(y, b)$$
Thicket: Drug-Drug Interactions

Given $\mathcal{Z} = \{\{X_1\}, \{X_2\}\}$ with $Q = P(y|do(x_1, x_2))$ (* $P_\bullet(\bullet) = P_\circ(\circ)$)

- This is a thicket for $P_x(y, b)$ w.r.t. \mathcal{G} and \mathcal{Z}.

$$P_{x_1, x_2}(y) = \sum_b P_{x_1, x_2}(y, b) = \sum_b P_{x_1, x_2}(y, b)$$
Thicket: Drug-Drug Interactions

Given $Z = \{\{X_1\}, \{X_2\}\}$ with $Q = P(y | do(x_1, x_2))$ (* $P(\bullet) = P(\circ)$)

- This is a thicket for $P_x(y)$ w.r.t. G and Z.

\[P_{x_1,x_2}(y) = \sum_{b} P_{x_1,x_2}(y, b) = \sum_{b} P_{x_1,x_2}(y, b) \]
Non-g-identifiability

gID algorithm
FAILs

THICKET exists for $P(M_1 \& M_2)$

due to non-gid $P(x(y))$. M1 \& M2 are not presented in this talk
Non-g-identifiability

gID algorithm FAILs

THICKET exists for \(P(\bullet)(\bullet) \)

\[P(\bullet)(\bullet) \]

\[M_1 \land M_2 \]

not presented in this talk
Non-g-identifiability

- gID algorithm
 - FAILs

- THICKET exists for $P(x(y))$

- non-gid $P(x(y))$
 - $\mathcal{M}^1 & \mathcal{M}^2$

Not presented in this talk
Non-g-identifiability

- gID algorithm FAILs
- THICKET exists for $P_0(y)$ and $M_1 \& M_2$
- non-gid $P_0(y)$ in $M_1 \& M_2$
- non-gid $P_x(y)$ in $M_1' \& M_2'$

not presented in this talk
Conclusions

• We studied general-identifiability — causal effect identifiability given a causal graph and an arbitrary combination of observational and experimental distributions.

• ✓ a necessary and sufficient graphical condition (thicket?).
 ✓ a sound and complete algorithm

• Research Directions: finite-sample efficient formula, studying bounds for the causal effect when not-g-identifiable, incorporating functional assumptions, without a causal graph or partially-specified graphs.

• We further investigated the generalization of this work for transportability (data coming from heterogeneous domains) and for conditional causal effect, e.g., $P_x(y|w)$ (next session@Murray).
Conclusions

- We studied **general-identifiability** — causal effect identifiability given a causal graph and an **arbitrary combination of observational and experimental distributions**.

- A necessary and sufficient graphical **condition**.
 - A sound and complete **algorithm**

- **Research Directions**: finite-sample efficient formula, studying bounds for the causal effect when not-g-identifiable, incorporating functional assumptions, without a causal graph or partially-specified graphs.

- We further investigated the generalization of this work for transportability (data coming from heterogeneous domains) and for conditional causal effect, e.g., $P_x(y|w)$ (next session@Murray).
Conclusions

• We studied general-identifiability — causal effect identifiability given a causal graph and an arbitrary combination of observational and experimental distributions.

• ✓ a necessary and sufficient graphical condition (thicket?).
 ✓ a sound and complete algorithm

• Research Directions: finite-sample efficient formula, studying bounds for the causal effect when not-g-identifiable, incorporating functional assumptions, without a causal graph or partially-specified graphs.

• We further investigated the generalization of this work for transportability (data coming from heterogeneous domains) and for conditional causal effect, e.g., $P_x(y|w)$ (next session@Murray).
References

Pearl’00 J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press

HV’06 Y. Huang, M. Valtorta. Identifiability in Causal Bayesian Networks: A Sound and Complete Algorithm. AAAI 2006

BP’14 E. Bareinboim, J. Pearl. Transportability from Multiple Environments with Limited Experiments: Completeness Results NeurIPS 2014

LCB’19 S. Lee, J. D. Correa, E. Bareinboim. General Identifiability with Arbitrary Surrogate Experiments. UAI 2019