Characterizing Optimal Mixed Policies: Where to Intervene and What to Observe

Sanghack Lee and Elias Bareinboim Columbia University

> NeurIPS 2020 December 2020

executive summary

► Q: How can <u>Causal Knowledge</u> be utilized in Decision Making? freedom to choose variables to intervene and observe → a large policy space

Characterizations for an efficient and effective exploration: non-redundancy no unnecessary intervention and observation optimality capable to achieve an optimal reward

▶ The characterizations lead to *faster* convergence to an optimal policy.

Decision Making, Policy, and Causal Structure

$\mathsf{Agent} \leftrightarrow \mathsf{Environment}$

Decision Making, Policy, and Causal Structure

$\mathsf{Agent} \leftrightarrow \mathsf{Environment}$

Decision Making, Policy, and Causal Structure

Agent \leftrightarrow Environment

Mixed Policy Examples

) for intervened variables, ightarrow for policy-induced dependency.

The Modes of Interaction

Mixed Policy Scopes (as their induced graphs)

One scope has fewer actions or contexts than the other has, yet with the same optimal reward guarantee:

Non-redundancy: [‡] a smaller scope with the same optimal reward

One's best policy is always as good as the other's:

Optimality: \nexists a better scope wrt an optimal reward

 $[\]subseteq$: fewer actions and/or contexts, $=_{\mu}$: rewards for their optimized policies are the same.

One scope has fewer actions or contexts than the other has, yet with the same optimal reward guarantee:

Non-redundancy: ¹/₄ a smaller scope with the same optimal reward

One's best policy is always as good as the other's:

Optimality: \nexists a better scope wrt an optimal reward

 $[\]subseteq$: fewer actions and/or contexts, $=_{\mu}$: rewards for their optimized policies are the same.

One scope has fewer actions or contexts than the other has, yet with the same optimal reward guarantee:

Non-redundancy: *∄* a smaller scope with the same optimal reward

One's best policy is always as good as the other's:

Optimality: \nexists a better scope wrt an optimal reward

 $[\]subseteq$: fewer actions and/or contexts, $=_{\mu}$: rewards for their optimized policies are the same.

One scope has fewer actions or contexts than the other has, yet with the same optimal reward guarantee:

Non-redundancy: ∄ a smaller scope with the same optimal reward

One's best policy is always as good as the other's:

 \subseteq : fewer actions and/or contexts, $=_{\mu}$: rewards for their optimized policies are the same.

One scope has fewer actions or contexts than the other has, yet with the same optimal reward guarantee:

Non-redundancy: ∄ a smaller scope with the same optimal reward

One's best policy is always as good as the other's:

Optimality: *A* a better scope wrt an optimal reward

 $[\]subseteq$: fewer actions and/or contexts, $=_{\mu}$: rewards for their optimized policies are the same.

$Characterizations \rightarrow \text{Efficient and Effective Exploration}$

Mixed Policy Scopes with Non-redundancy & Optimality

$Characterizations \rightarrow Efficient \ and \ Effective \ Exploration$

Mixed Policy Scopes with Non-redundancy & Optimality

