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Motivation & Background Fine-Grained Causal Dynamics Learning Experiments
» Causal dynamics learning aims to build a dynamics model that makes predictions Score for Decomposition and Graphs Environments
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« However, causal connections often manifest only under certain contexts and existing «We aim to find {G3, £5} € argmax S({G-, gz} _1) with dynamics model p. - N
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. Local independence (e.q., context-specific independence): V .dea earn a discrete latent variable with vector quantization that represents the s Sy R LR
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G: causal graph (CQ), Gp: local causal graph (LCG) on D

Quantization (" Codebook |  Local ‘causal graphs,

(O State or Action Variables
O Masked Variables

In Chemical, the root node determines fine-grained relationships.
*In Magnetic, an object exhibits magnetism if it is colored red.

U650 . s
_ _ | . U e St S SAEL Lo S L © S / Prediction Accuracyv (ID. O0OD
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Related Works & Problem Formulation « Each sample (s, a) Is quantized to nearest code e>, which Is then decoded to the Learning Curve Local Causal Discovery
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*(a) Prior causal dynamics models: p,(s’ | s, a; )
*(b) Sample-specific approaches: p,(s’ | s, ;G s 4))
*(c) Our approach: p,(s’ | s, a; G¢)

v/ fine-grained causal relationships

v/ Interpretable v theoretically-grounded

Goal: Discover meaningful decomposition {&1, - - -
that entails sparse LCGs {§q, - -

, &} of state-action space § x A

, Gk} and incorporate them into dynamics modeling.
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Theoretical Analysis & Interpretation

Theoretical Analysis
v ldentifiability of LCGs (Thm. 1) / Identifiability of contexts (Thm. 2)
* Requirement: sufficient quantization degree K (= codebook size).

Connections to Prior Approaches
* K = 1: corresponds to prior (global) causal models.

* K — oco: reverts to sample-specific approaches.
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Conclusion

*We present a novel approach to dynamics learning that infers fine-grained causal
relationships, leading to improved robustness of MBRL.

*Our method learns a discrete latent variable that represents the pairs of a subgroup
and a local causal graph (LCG), allowing joint optimization with the dynamics model.



