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Introduction and Background

* |dentifying and estimating a causal effect is a fundamental task when inferring a
causal effect using observational study without experiments.

 Strict positivity (P(V) > 0) of the given distribution is a long-standing critical as-
sumption for causal inference, which is often unrealistic in many practical scenarios.

*We examine the graphical counterpart of the conventional positivity condition to
license the use of identification formula without strict positivity.

Motivating Examples

Backdoor formula (existing results):
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* To estimate the average treatment effect, there must exist some subjects that received
the treatment for each value of the covariate in the population—i.e., P(X | z) > 0 for
all z with P(z) +# 0.

* Under the strict positivity, we can identify the causal effect—i.e., we can get the
intervened distribution of y (Px(y)) from the observed distribution P(V).

Multiplicity of identification formulae and conditions:
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*Without strict positivity, one may estimate the causal effect with a formula but not
with the other.

Causal Identification with Strict Positivity

* The causal effect Px(y) is identifiable if it can be uniquely computed from P(V) in
any causal model which induces G.

Two main tools for eliciting the identification formula, do-calculus and Q-
decomposition, are established under the strict positivity assumption.

Do-Calculus Q-decomposition

* The following transformation are valid for «Given H C V, let Hq, ..., H, be the
any positive do-distribution induced by a | c-components of G[H]. Let <bea
model: topological order over G[H]. Let H=' be
_Rule 1 (addition/deletion of the variables in H that come before V()
Observatign): Py v ‘ Z,W) — Px(y ‘ W) if inCIud_ing V(I) Given Q[H] > 0, where
(Y 1L Z|X,W)g, QH='T=>"p-i QH],

—Rule 2 (exchange of action and OH = QMH]
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if (Y L Z|X W), * (Napkin)

—Rule 3 (addition/deletion of action): QIW, X, Y] =
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* These two well-known methods of identification heavily rely on P(V) > 0.

Post-hoc Analysis

(Prop 7.1) Post-hoc analysis yields a sufficient positivity condition for the identification

formula derived through Identify+.
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Causal Identification with Relaxed Positivity

v/ Do-Calculus v/ Q-decomposition

+ (Prop 4.2) We develop a general and prin- *(Thm 5.1) We modity Q-decomposition
cipled approach for deriving a sufficient sfo.that It does not rely on the strict posi-
positivity condition by examining the con-  tVIty.

ditions for do-calculus. * (Napkin)

—Rule 1: Px(y | z,w) = Px(y | w) QIW, X, Y] =
if (Y L Z|W)g\x)and Px(z,w) >0 QW,R, X,Y] QW] .

~Rule 2: Paly | W) = Pxly | . w) aw.m e T
if (Y 1.2 W)(Q\X)Z and Px(z,w) > 0 QIW, X, Y] = f Q] =

—Rule 3: Px z(y | w) = Px(y | w) |
it (Y AL Z | W)g\x), 2Nd Px(w) > 0 *(Thm 6.1) We devise Identify+ that
) returns a positivity and identification for-

mula which is sound.
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Conclusion

*We provide positivity conditions for do-calculus and generalized Q-decomposition,
forming a basis for causal effect identification without P(V) > 0.

*We devise Identify+ algorithm, incorporating a relaxed version of generalized
Q-decomposition into an existing identification method.

*We hope this research sparks further investigation into the development of an identifi-
cation algorithm that adapts to the positivity.
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