On Positivity Condition for Causal Inference

Yesong Choe* Yeahoon Kwon Inwoo Hwang*

Introduction and Background

- Identifying and estimating a causal effect is a fundamental task when inferring a causal effect using observational study *without experiments*.
- •Strict positivity (P(V) > 0) of the given distribution is a long-standing critical assumption for causal inference, which is often unrealistic in many practical scenarios.
- •We examine the graphical counterpart of the conventional positivity condition to license the use of identification formula without strict positivity.

Motivating Examples

Backdoor formula (existing results):

 $P_X(y) = \sum P(y \mid x, \mathbf{z}) P(\mathbf{z})$ $\Rightarrow \forall \mathbf{z}(P(\mathbf{z}) = 0 \lor P(x \mid \mathbf{z}) > 0) \equiv \operatorname{adj}(\mathbf{x}; \mathbf{Z})$

- To estimate the average treatment effect, there must exist some subjects that received the treatment for each value of the covariate in the population—i.e., $P(X \mid \mathbf{z}) > 0$ for all **z** with $P(\mathbf{z}) \neq 0$.
- Under the strict positivity, we can identify the causal effect—i.e., we can get the intervened distribution of y ($P_X(y)$) from the observed distribution $P(\mathbf{V})$.

Multiplicity of identification formulae and conditions:

 Without strict positivity, one may estimate the causal effect with a formula but not with the other.

Sanghack Lee

- Backdoor
- Front-door
- IDENTIFY

Causal Identification with Strict Positivity

- The causal effect $P_X(y)$ is identifiable if it can be uniquely computed from $P(\mathbf{V})$ in any causal model which induces \mathcal{G} .
- decomposition, are established under the strict positivity assumption.

Do-Calculus

- The following transformation are valid for $|\bullet$ Given $\mathbf{H} \subseteq \mathbf{V}$, let $\mathbf{H}_1, \ldots, \mathbf{H}_k$ be the any positive do-distribution induced by a c-components of $\mathcal{G}[H]$. Let \prec be a model:
- -Rule 1 (addition/deletion of observation): $P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{z}, \mathbf{w}) = P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\mathbf{v}}}$
- -Rule 2 (exchange of action and observation): $P_{\mathbf{X},\mathbf{Z}}(\mathbf{y} \mid \mathbf{w}) = P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{Z}, \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\overline{\mathbf{Y}}}}$
- -Rule 3 (addition/deletion of action): $P_{\mathbf{X},\mathbf{Z}}(\mathbf{y} \mid \mathbf{w}) = P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\overline{\mathbf{X}}, \overline{\mathbf{Z}(\mathbf{W})}}},$ where $Z(W) = Z \setminus An(W)_{\mathcal{G}_{\nabla}}$.
- These two well-known methods of identification heavily rely on P(V) > 0.

Post-hoc Analysis

• (Prop 7.1) Post-hoc analysis yields a sufficient positivity condition for the identification formula derived through Identify+.

 $1 \geq 0 \leftarrow \operatorname{adj}(r; W)$

 $\therefore \exists r(\operatorname{adj}(r; W) \land P(x, r) > 0)$

•Two main tools for eliciting the identification formula, do-calculus and Q-

Q-decomposition topological order over $\mathcal{G}[\mathbf{H}]$. Let $\mathbf{H}^{\leq \prime}$ be the variables in **H** that come before $V^{(\prime)}$ including $V^{(i)}$. Given Q[H] > 0, where $Q[\mathbf{H}^{\leq \prime}] = \sum_{\mathbf{h}^{\succ i}} Q[\mathbf{H}],$ $Q[\mathbf{H}_j] = \prod_{V^{(i)} \in \mathbf{H}_j} \frac{Q[\mathbf{H}^{\leq i}]}{Q[\mathbf{H}^{\leq i-1}]}.$ •(Napkin) Q[W, X, Y] = $Q[W, R, X, Y] \quad Q[W, R, X] \quad Q[W]$

Q[W, R]

 $Q[\emptyset]$

Q[W, R, X]

 $\exists r \frac{\sum_{W} P(y, x \mid r, w) P(w)}{\sum_{W} P(x \mid r, w) P(w)} \ge 0 \quad \Leftarrow \exists r (1) \ge 0 \land (2) > 0)$ $2 > 0 \leftarrow \operatorname{adj}(r; W) \land P(x, r) > 0$

Causal Identification with Relaxed Positivity

🗸 Do-C

• (Prop 4.2) We deve cipled approach fo positivity condition ditions for do-calcu -Rule 1: $P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{z}, \mathbf{w})$ if (**Y** ⊥⊥ **Z** | **W**)_{(C} -Rule 2: $P_{\mathbf{x},\mathbf{z}}(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{W})_{\mathcal{C}}$ -Rule 3: $P_{\mathbf{x},\mathbf{z}}(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{W})_{\mathcal{C}}$ •(Napkin) $P_X(y) = P_{W,r}(y \mid x)$ $= P_{W,r}(y,x)/I$ $= \frac{\sum_{w'} P(y, x | r, w)}{\sum_{w'} P(x | r, w')}$ $\therefore \exists r(adj(r; W))$

- •We provide positivity conditions for **do-calculus** and **generalized Q-decomposition**, forming a basis for causal effect identification without P(V) > 0.
- •We devise Identify+ algorithm, incorporating a relaxed version of generalized **Q-decomposition** into an existing identification method.
- •We hope this research sparks further investigation into the development of an identification algorithm that adapts to the positivity.

• Pearl, J. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995. • Tian, J. and Pearl, J. On the identification of causal effects. Technical Report R-290-L, Department of Computer Science, University of California, Los Angeles, CA, 2003.

Calculus	✓ <i>Q</i> -decomposition
elop a general and prin- or deriving a sufficient by examining the con- ulus.	 (Thm 5.1) We modify Q-decomposition so that it does not rely on the strict posi- tivity. (Napkin)
$\mathbf{v}) = P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{w})$	Q[W, X, Y] =
$P_{\mathbf{X}}(\mathbf{x}, \mathbf{w}) > 0$ $P_{\mathbf{X}}(\mathbf{y} \mid \mathbf{z}, \mathbf{w})$	$\frac{Q[W, R, X, Y]}{Q[W, R]} \cdot \frac{Q[W]}{Q[\emptyset]} \text{if } Q[W, R] > 0$
$P_{\mathbf{X} \mathbf{Z}} \text{ and } P_{\mathbf{X}}(\mathbf{Z}, \mathbf{W}) > 0$ $P_{\mathbf{X}}(\mathbf{Y} \mid \mathbf{W})$	Q[W, X, Y] = 0 if $Q[W] = 0$
$Z(\mathbf{X})_{\overline{\mathbf{Z}(\mathbf{W})}}$ and $P_{\mathbf{X}}(\mathbf{W}) > 0$	•(Thm 6.1) We devise Identify+ that returns a positivity and identification for- mula which is sound.
if $P_{W,r}(x) > 0$	$P_X(y) =$
$P_{W,r}(x)$ if $P_{W,r}(x) > 0$	$\sum_{W} Q[\{W, X, Y\}](x, y, w, r) > 0$
$\frac{W'P(W')}{P(W')}$. if $adj(r; W)$	$\sum_{y',w} Q[\{W, X, Y\}](x, y', w, r) \leq 0$
$() \land P(x,r) > 0)$	$\therefore \exists r(\operatorname{adj}(r; W) \land P(x, r) > 0)$

Conclusion

References