

Causal Discovery with Deductive Reasoning: One Less Problem

Jonghwan Kim, Inwoo Hwang, Sanghack Lee Causality Lab.

ual

Motivation & Background

Constraint-based causal discovery utilizes multiple conditional **independence tests** (CITs) to induce underlying causal structure of data. Starting from a complete undirected graph, PC algorithm removes edges based on CIT results accordingly.

However, high-order CITs with low power often yield false negatives, propagating errors throughout the structure learning process.

Prior works have tackled this issue with either simple heuristics or **complicated routines** with heavy computational burden.

Deductive Reasoning for Causal Discovery

Q. How can we properly correct unreliable CIT results for robust structure learning? **A.** Utilize relationships with other CIT results for correcting unreliable CIT result! **?**

Ingredients: Graphoid Axioms

► Graphoid axioms (Pearl and Paz, 1987) can be used to constrain CI statements by other CI statements. ► Under the faithfulness, we have more relaxed rules derived from graphoid axioms as follows: (*selected*)

Symmetry: $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ \iff (Y $\perp \!\!\!\perp$ X | Z) Decomposition: $(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$

Illustrative Example

CD algorithm tries to discover the left. It tries to examine X - Y where the following are accurately obtained:

$(X \not\perp Y \mid Z')$ and $(X \not\perp Y \mid Z'')$.

Unfortunately, the relationship between X and Y is relatively weak, and we wrongly obtained:

$(X \perp Y \mid Z', Z''),$

We may have a doubt about the CIT result, worrying about its power being low. Then, we may examine the following CI between Y and Z''given Z', where the CIT correctly yields ($Y \perp Z'' \mid Z'$). In such case, we can indeed induce ($X \not\perp Y \mid Z', Z''$) from the two existing CIT results and $(Y \perp Z'' \mid Z')$ via applying rules derived from graphoid axioms.

 \implies (X $\perp \!\!\!\perp$ Y | Z) \land (X $\perp \!\!\!\perp$ W | Z)

Contraction: $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \land (\mathbf{X} \perp \mathbf{W} \mid \mathbf{Z}, \mathbf{Y})$ \implies (X $\perp \!\!\!\perp$ Y, W | Z)

Weak Transitivity: $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}) \land (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, W)$ $\implies (\mathbf{X} \perp \!\!\!\perp W \mid \mathbf{Z}) \lor (W \perp \!\!\!\perp \mathbf{Y} \mid \mathbf{Z})$

Deducing Dependence

We provide a condition for deducing higher-order dependence statement with lower-order CI statements.

Theorem Deduce-Dep

Under the faithful Bayesian network (\mathcal{G}, P) , let $\{X\} \sqcup \{Y\} \sqcup Z \subseteq V, Z \in Z$, and $Z' = Z \setminus \{Z\}$. lf $(X \not\perp Y \mid \mathbf{Z}') \oplus ((X \not\perp Z \mid \mathbf{Z}') \land (Y \not\perp Z \mid \mathbf{Z}')),$

then $(X \not\perp Y \mid Z)$ holds.

Algorithm: Deduce-Dep

- Our method replaces unreliable CIT results with deductively reasoned results from lower-order CITs, which are deemed more *reliable*.
- Our method can be effortlessly plugged into any constraint-based structure learning algorithm.

 Input: {X}, {Y}, Z disjoint subsets of V, reliability threshold K (default 1)
2: Output : Whether $(X \not\perp Y \mid \mathbf{Z})$ is deducible or not.
3: if $ \mathbf{Z} \leq K$ return FALSE
4: for <i>Z</i> ∈ Z
5: $\mathbf{Z}' \leftarrow \mathbf{Z} \setminus \{Z\}$
6: for $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ in $\{(X, Y, \mathbf{Z}'), (X, Z, \mathbf{Z}'), (Y, Z, \mathbf{Z}')\}$
7: if $(\mathbf{A} \perp \mathbf{B} \mid \mathbf{C})$ and not DEDUCE-DEP $(\mathbf{A}, \mathbf{B}, \mathbf{C})$
8: mark (A ; B C) as ⊥⊥
9: else mark (A; $\mathbf{B} \mid \mathbf{C}$) as μ
10: if $(X \not\perp Y \mid \mathbf{Z}') \oplus ((X \not\perp Z \mid \mathbf{Z}') \land (Y \not\perp Z \mid \mathbf{Z}'))$
11: return TRUE

12: return FALSE

- 1: Input: a set of variables V, and CI tester
- 2: **Output**: a CPDAG
- 3: Initialize G with a complete undirected graph
- 4: for $k \in 1, 2, ...,$
- for an ordered pair of adjacent vertices $(X, Y) \in \mathcal{G}$ s.t. $|Ne(\{X\})_{\mathcal{G}} \setminus \{Y\}| \ge k$
- for $\mathbf{S} \subseteq Ne(\{X\})_{\mathcal{G}} \setminus \{Y\}$ s.t. $|\mathbf{S}| = k$
 - if $(X \perp Y \mid \mathbf{S})$
 - if not DEDUCE-DEP($\{X\}, \{Y\}, S$)
 - Remove *X*-*Y* from \mathcal{G}
- 10: else break
- 11: Orient \mathcal{G} for unshielded colliders
- 12: Complete orientation of G with Meek's rules
- 13: return G

7:

8:

9:

Experimental Results

Under data-scarce scenarios, our method improves the performance of structure learning (continuous or discrete, linear or non-linear).

Conclusion

Contribution

- We proposed a practical correction method for unreliable CITs by leveraging rules derived from graphoid axioms.
- Our method can be effortlessly adapted to any constraint-based structure learning algorithm.
- Empirical evaluation reveals that our method properly corrects the unreliable CITs, improving the performance of structure learning.

Future Work

Combining our method with false positive control methods might ensure a more robust causal structure learning.