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» Constraint-based causal discovery utilizes multiple conditional
independence tests (ClTs) to induce underlying causal structure of data.

» Starting from a complete undirected graph, PC algorithm removes edges
based on CIT results accordingly.
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Causal Discovery with Deductive
Reasoning: One Less Problem
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» However, high-order ClTs with low power often yield false negatives,
propagating errors throughout the structure learning process.
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» Prior works have tackled this issue with either simple heuristics or
complicated routines with heavy computational burden.
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Q. How can we properly correct unreliable CIT results for robust structure learning?
A. Utllize relationships with other CIT results for correcting unreliable CIT result!

» Graphoid axioms (Pearl and Paz, 1987) can be used to
constrain Cl statements by other Cl statements.

» Under the faithfulness, we have more relaxed rules ~
derived from graphoid axioms as follows: (selecteqd) A

Symmetry: (X 1L Y | Z)
— (Y 1L X|Z)

Decomposition: (X 1L Y, W | Z)
— X LY |Z)A(X 1L W|Z)

Contraction: (X LY |Z)A(X LW |ZY)
— (X 1LY W|2Z)
Weak Transitivity: (X LY | Z)A (X 1LY | Z, W)
— XL W|Z)v(WIY|2Z)

CD algorithm tries to discover the left. It tries to examine X — Y where
the following are accurately obtained:

(X Y| Z)and (X 4 Y |Z").

Unfortunately, the relationship between X and Y is relatively weak, and
we wrongly obtained:
(XL Y|Z Z",

We may have a doubt about the CIT result, worrying about its power
being low. Then, we may examine the following Cl between Y and Z”
given Z', where the CIT correctly yields (Y 1. 2" | Z'). In such case, we
can indeed induce ( X /L Y | Z' Z" ) from the two existing CIT results
and (Y 1. 2" | Z") via applying rules derived from graphoid axioms.

» Our method replaces unreliable CIT results with deductively reasoned results from lower-order ClTs,
which are deemed more reliable.

» Our method can be effortlessly plugged into any constraint-based structure learning algorithm.

: % : : _ 1: Input: {X},{Y},Z disjoint subsets of V, reliability 1: Input: a set of variables V, and Cl tester
We provide a condition fo_r deducing higher-order ihreshold K (defadt 1) 2. Output: 2 CPDAG
dependence statement with lower-order Cl statements. 2 Qutput: Whether (X £ Y | Z) is deducible or not. 3: Initialize G with a complete undirected graph
3: if |Z| < K return FALSE 4: forke1,2,...,
Theorem nguce-Dep | g forZ/Zi ; 2 g forfirr] grcjge;\elg(?ig)ogf sij?/ie:.i.ngliei(X, Y)e Gs.t. [INe({X})g\{Y} > k
Under the faithful Bayesian network (G, P), 6: for (A B,C)in {(X,Y.Z),(X,2.2),(Y.Z,Z)} 7 if (X 1L Y|S)
let {X} | | {Y} 11 Z C V, Z c Z, and Z' =727 \ {Z} 7: if (A 1L B| C)and not DEDUCE-DEP(A, B, C) 8: if not DEDUCE-DEP({ X}, {Y},S)
If 8: mark (A;B | C) as 1L 9: Remove X-Y from G
9: else mark (A;B | C)as A 10: else break
(X)L Y|Z’)@ ((X7}LZ|Z')/\(Y7JLZ‘Z’)), 10: if(XJLY]Z’)@((X#}Lzyzf)/\(y)iz\zf)) 11: Orient G for unshielded colliders
11 return TRUE 12: Complete orientation of G with Meek’s rules
then (X 1Ly | Z) holds. 12: return FALSE 13: return G

Under data-scarce scenarios, our method improves the performance of

structure learning (continuous or discrete, linear or non-linear).
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Contribution
» We proposed a practical correction method for unreliable ClTs by

leveraging rules derived from graphoid axioms.

» Our method can be effortlessly adapted to any constraint-based structure

learning algorithm.

» Empirical evaluation reveals that our method properly corrects the

unreliable CITs, improving the performance of structure learning.

Future Work
» Combining our method with false positive control methods might ensure a

more robust causal structure learning.



