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Multi-Armed Bandit

Multi-armed bandit (MAB) problem is a classic
sequential decision-making problem.

Arms a set of arms, A, to play
each arm associates with a reward distribution,

Play pulling an arm Ax ∈ A for each round,
Reward a reward Yx is drawn from the arm’s reward

distribution,
Goal to minimize a cumulative regret over T .

Structural Causal Model — the Causal Framework

A Structural Causal Model M = 〈U,V,F,P(U)〉:
U unobserved variables;
V observed variables;
F causal mechanisms for V using U and V;

P(U) a joint distribution over U (randomness).

SCM-MAB = MAB on SCM

I 〈M,Y ,N〉:
a SCM M; a reward variable Y ∈ V; non-manipulables N

IArms A correspond to all possible interventions
{Ax | x ∈ D(X),X ⊆ V \ N \ {Y}}.

IReward: distribution P(Yx) := P(Y | do(x)) = Px(Y ),
expectation, µx := E[Y | do(x)].
Assumption: 1) a causal graph G of M is accessible; 2)
values of observable variables, v, are obtained for each play.

MAB
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Arms = a set of diet values

SCM-MAB

Diet Cholesterol Health

Gene

Arms = doing nothing, values for diet, cholesterol, and
both (combinations).
With N = {Cholesterol}, Arms = doing nothing, values
for diet

*valid question: Can’t we just use MAB with D,C Health and ‘do-nothing’ arm?

Structural Properties of SCM-MAB — How can we utilize the given causal structure? dependency among the arms?

1. Equivalence

Two arms share the same reward
distribution, e.g.,

µd ,c = µc
whenever intervening on some
variables doesn’t have a causal effect
on the outcome.

→ Test P(y | do(d , c)) = P(y | do(c))
through Y ⊥⊥ C | D in G{D,C}
(Rule 3 of do-calculus, Pearl (2000)).

Minimal Intervention Set (MIS)
IA minimal set of variables among ISs

sharing the same reward distribution.

IGiven that there are sets with the
same reward distribution, we would
like to intervene on a minimal set of
variables yielding smaller # of arms.

2. Partial-orderedness

A set of variables X may be preferred
to another set of variables Z
whenever their maximum achievable
expected rewards can be ordered:

µc∗ = maxc µc ≥ maxd µd = µd∗

µd =
∑

c

µcP(c|d)

≤
∑

c

µc∗P(c|d)

= µc∗

Possibly-Optimal MIS (POMIS)
IAn MIS that can achieve an optimal

expected reward in some SCM M

conforming to the causal graph G is
called a POMIS.

IClearly, pulling non-POMISs will incur
regrets and delay the identification of
the optimal arms.

3. Identifiability

Can one arm’s reward distribution
Px(y) be expressed with other arms’
distributions?

Pd(y) =
∑

c P(c|d)
∑

d ′ P(y |c,d ′)P(d ′)

z2ID algorithm:
outputs an expression (if it can) given
a query (i.e., reward distribution) and
available distributions.

Minimum Variance Weighting:
is a principled way to combine
estimates from multiple estimators
using multiple data sources

SCM-MAB algorithms

1. Play only POMIS arms
(→ small # of arms)

2. Incorporate z2ID and MVW
(→ more accurate estimation)

Empirical Evaluation

I4 strategies: Brute-force (all ISs), MIS, POMIS, POMIS+
I2 base MAB algorithms: TS, kl-UCB
I3 SCM-MAB problems (w/ binary variables)

e.g.,
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Performance: POMIS+ > POMIS ≥ MIS ≥ Brute-force
? Note that POMISs ⊆ MISs ⊆ all ISs

Conclusions

ICausal mechanisms do exist.

IAgents ignorant to an underlying causal mechanism
might behave suboptimally.

defined SCM-MAB w/ non-manipulability constraints

studied 3 structural properties of SCM-MAB

devised SCM-MAB algos w/ the structural properties

observed better performance than MAB algo w/o causal
knowledge

Visit causalai.net for more papers on causality.


