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Overview
• Causality & Everyday Life, Science, Artificial Intelligence .

• Causal Effect Identifiability concerns about precisely determining the
effect of intervention given information (e.g., causal assumptions and
an observational data).

• General Identifiability considers identifying a causal effect given an
arbitrary combination of observational and experimental data .

• We provided a graphical necessary and sufficient condition under
which a causal effect of interest can be estimable. We devised a
sound and complete algorithm which outputs a formula for the
causal effect made with probabilities obtained from available data.
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Causal Framework
SCM provides an abstraction of causality in the real-world.

Definition (Structural Causal Model (Pearl))
SCM M is a 4-tuple hU,V,F,P(U)i
• U = {U1, . . . ,Um} are exogenous variables;
• V = {V1, . . . ,Vn} are endogenous variables;
• F = {f1, . . . , fn} are functions determining V,

vi  fi(pa
i ,ui)

where PA
i ✓ V \ {Vi}, Ui ✓ U; and

• P(U) is a joint distribution over U
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(Classic) Causal Effect Identifiability

Query Q
Px(y) = P(y|do(x))
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g-identifiability
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Definition (g-Identifiability)
Let Z = {Zi}m

i=1 be a collection of sets of variables.

Px(y) is said to be g-identifiable from P in G, if Px(y) is
uniquely computable from distributions

P = {P(V | do(Zi)) }Zi2Z

in any causal model which induces G.
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Related Work: *-Identifiability
Causal identifiability has been been studied in the literature:

ID An observational distribution [TP’02, SP’06, HV’06]:

P(V)

zID A set of manipulable variables [BP’12]:

{PZ0(V)}Z0✓Z

mzID A collection of manipulable variables [BP’14]:

{{PZ0(V)}Z0✓Zi}m
i=1

gID A collection of arbitrary experiments [LCB’19]:

{PZi (V)}Zi2Z

ID

zID

mzID

gID
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Example: Drug-Drug Interactions
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(d) 7

Y cardiovascular disease; B blood pressure; X1 taking an antihypertensive
drug; and X2 the use of an anti-diabetic drug.

Goal: assess the effect of prescribing both treatments ( ) on the risk of
cardiovascular diseases from individual drug experiments, either or .
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g-identifiability
– a sound algorithm
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Algorithm for gID
We developed a two-phase algorithm w/ probability axioms & do-calculus:

1. A given query is modified, and factorized into subqueries;
2. Each subquery is identified by one of the available distributions.
* It FAILs only if there exists a subquery that cannot be identified by any

of the available distributions.

! !Px(y)Q Px(y)

P ( )

...

P ( )

P ( )

PZ1

...
P

PZm�1

PZm

P ( )
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Algorithm for gID (1st phase)
function GID( , ,G,Z)

if 9Z2Z = Z \ V then . check whether a matching experiment exists
return Pz\V, ( )

if V 6= An( )G then . retain only the ancestors of  
return GID( , \ An( )G ,G[An( )G ],Z)

if (W (V \ ) \ An( )G ) 6= ; then

return GID( , [ ,G,Z) . modify to a maximal intervention

S C(G \  )
if |S| > 1 then . factorize into subqueries

return
P
 
Q
 2S GID( ,  ,G,Z)

for Z 2 Z such that Z \ V ✓   do . identify with each of available distribution
return SUB-ID( ,  \ Z,P(z\V),  \Z,G \ (Z \  )) if not NONE

throw FAIL

sub-ID is a simplified ID algorithm [SP’06], which returns NONE if failed.
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Algorithm for gID (2nd phase)
function SUB-ID( ,  , Q, G)

{S} C(G \ )
if  = ; then . check identified

return
P

v\ Q(v)

if V 6= An( )G then . retain only the ancestors of  
return SUB-ID( , \ An( )G ,

P
v\An( )G

Q,G[An( )G ])

if C(G) = V then . check the existence of a hedge
return NONE

if S 2 C(G) then . check identifiable
return

P
s\ 

Q
Vi2 Q(vi |v(i�1)

⇡ ).

if S ( S0 2 C(G) then . modify input (query, distribution, and graph)
return SUB-ID( , \ S0,

Q
Vi2S0 Q(Vi |V(i�1)

⇡ \ S0, v(i�1)
⇡ \ S0),S0)
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Example: Durg-Drug Interactions
Y : heart disease, B: blood pressure, X1,X2: drugs
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Px1,x2(y , b)
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=
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b

Px1(b)Px2(y |b)
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non-g-identifiability
– the failure condition & a prohibiting structure
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Proving Non-g-Identifiability

To prove Px(y) is not g-identifiable from Z in G,

we construct
two causal models M1 and M2 compatible with G such that

P1
z
(v) = P2

z
(v) for all Z 2 Z, z 2 XZ , but P1

x
(y) 6= P2

x
(y) .

SCM M1 G SCM M2

· · ·PZ1(V) PZn(V)

available data P

P1
x
(y) P2

x
(y)
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Recall the failed factor ...

! !Px(y)Q Px(y)

P ( )

...

P ( )

P ( )

PZ1

...
P

PZm�1

PZm

P ( )

phase-1 phase-2

9P ( ) such that 8PZi 2 P fails
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P ( ) versus PZi 2 P (phase-2)
There are 3 situations in identifying a factor P ( ) with a distribution
PZi 2 P.

• 3 (the good) identified,
e.g., PD, Pc,d(e, f ) = Pd(e, f |c)

• 7 (the ugly) Zi on  ,
e.g., PE ,D

• 7 (the bad) 9hedge [SP’06],
e.g., PC

E F

C D

A B

the original order should be: the good, the bad, and the ugly.



21

P ( ) versus PZi 2 P (phase-2)
There are 3 situations in identifying a factor P ( ) with a distribution
PZi 2 P.

• 3 (the good) identified,
e.g., PD, Pc,d(e, f ) = Pd(e, f |c)

• 7 (the ugly) Zi on  ,
e.g., PE ,D

• 7 (the bad) 9hedge [SP’06],
e.g., PC

E F

C d

A B

the original order should be: the good, the bad, and the ugly.



21

P ( ) versus PZi 2 P (phase-2)
There are 3 situations in identifying a factor P ( ) with a distribution
PZi 2 P.

• 3 (the good) identified,
e.g., PD, Pc,d(e, f ) = Pd(e, f |c)

• 7 (the ugly) Zi on  ,
e.g., PE ,D

• 7 (the bad) 9hedge [SP’06],
e.g., PC

e F

C d

A B

the original order should be: the good, the bad, and the ugly.



21

P ( ) versus PZi 2 P (phase-2)
There are 3 situations in identifying a factor P ( ) with a distribution
PZi 2 P.

• 3 (the good) identified,
e.g., PD, Pc,d(e, f ) = Pd(e, f |c)

• 7 (the ugly) Zi on  ,
e.g., PE ,D

• 7 (the bad) 9hedge [SP’06],
e.g., PC

E F

c D

A B

the original order should be: the good, the bad, and the ugly.



22

Failure ) 9 Thicket

• A thicket is the superimposition of hedges (the bad structure).
• (if every experiment intersects with  , confounded  s form a

‘degenerate thicket.’)

Hedge: a fence or boundary formed by closely growing bushes or shrubs. Thicket: a dense group of bushes or trees.
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Thicket

Definition
Let R be a non-empty set of variables and Z be a collection of sets of
variables in G. A thicket J ✓ G is an R-rooted c-component consisting of a
minimal c-component over R and hedges

FJ = {hFZ,J [R]i | FZ ✓ G \ Z,Z \ R = ;}Z2Z.

Let X, Y be disjoint sets of variables in G. A thicket J is said to be formed
for Px(y) in G with respect to Z if R ✓ An(Y)GX

and every hedgelet of each
hedge hFZ,J [R]i intersects with X.
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Thicket: Drug-Drug Interactions
Given Z = {{X1}, {X2}} with Q = P(y |do(x1, x2)) (* P ( ) = P ( ))
• The query is not g-identifiable, see B �!Y

B

Y

X1

X2

!

!

Px1,x2(y) =
X

b

Px1,x2(y , b) =
X

b

Px1,x2(y , b)
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Non-g-identifiability
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Conclusions
• We studied general-identifiability — causal effect indentifiability given a

causal graph and an arbitrary combination of observational and

experimental distributions.

• 3 a necessary and sufficient graphical condition (9thicket?).
3 a sound and complete algorithm

• Research Directions: finite-sample efficient formula, studying bounds
for the causal effect when not-g-identifiable, incorporating functional
assumptions, without a causal graph or partially-specified graphs.

• We further investigated the generalization of this work for
transportability (data coming from heterogeneous domains) and for
conditional causal effect, e.g., Px(y|w) (next session@Murray).
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