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Abstract

Conditional independence (CI) tests play a
central role in statistical inference, machine
learning, and causal discovery. Most existing
CI tests assume that the samples are indepen-
dently and identically distributed (i.i.d.). How-
ever, this assumption often does not hold in the
case of relational data. We define Relational
Conditional Independence (RCI), a generaliza-
tion of CI to the relational setting. We show
how, under a set of structural assumptions, we
can test for RCI by reducing the task of test-
ing for RCI on non-i.i.d. data to the problem
of testing for CI on several data sets each of
which consists of i.i.d. samples. We develop
Kernel Relational CI test (KRCIT), a nonpara-
metric test as a practical approach to testing
for RCI by relaxing the structural assumptions
used in our analysis of RCI. We describe re-
sults of experiments with synthetic relational
data that show the benefits of KRCIT relative
to traditional CI tests that don’t account for the
non-i.i.d. nature of relational data.

1 INTRODUCTION

Observational and experimental data represent system-
atic interactions among a set of random variables of in-
terest. Conditional independence (CI) tests constitute es-
sential tools for understanding such interactions. Ran-
dom variables X and Y are said to be conditionally in-
dependent given Z, denoted by X ⊥⊥ Y | Z, if and
only if the joint distribution Pxyz can be factorized as
Px|zPy|zPz . The notion of CI plays a central role in
statistical inference (Dawid, 1979), probabilistic graph-
ical models (Koller and Friedman, 2009), and causal dis-
covery (Pearl, 2000; Spirtes et al., 2000). A variety of

methods including, in particular, non-parametric meth-
ods (Fukumizu et al., 2008; Zhang et al., 2011; Doran
et al., 2014; Lee and Honavar, 2017) have been devel-
oped to test for CI in settings where the parametric form
of the underlying distribution is unknown but a measure
of closeness between data samples can be defined, e.g.,
using a kernel function. However, these methods implic-
itly or explicitly assume that the data samples are inde-
pendently and identically distributed (i.i.d.).

Many sources of real-world data, e.g., the WWW, cita-
tion networks, social networks, biomolecular networks,
exhibit a relational structure, wherein the data are nat-
urally represented as collections of interlinked entities.
In the resulting relational data, e.g., a citation network,
the entities, e.g., authors, articles, and institutions, clearly
do not constitute i.i.d. observations. Methods for learn-
ing causal models from relational data rely on oracles
that can answer CI queries from such data (Maier et al.,
2013; Lee and Honavar, 2016). Practical realizations of
such algorithms will need to replace such oracles by CI
tests against relational data. However, in the relational
setting, with the exception of autocorrelated data, e.g.,
time series (Chwialkowski et al., 2014), where ‘close-
ness’ in time, space, or network is well-defined (Flaxman
et al., 2016), effective ways to define and test for CI have
been lacking. Any attempt to generalize the notion of CI
to the relational setting needs to overcome several chal-
lenges: What are relational counterparts of random vari-
ables? How can we define their marginal distributions?

Against this background, inspired by the notion of rela-
tional d-separation (Maier et al., 2013), which general-
izes a graphical criterion for CI to a specific model of
relational data, we (i) Formalize Relational Conditional
Independence (RCI), the relational counterpart of CI. (ii)
Examine the dependence and heterogeneity of relational
variables in terms of the underlying relational structure.
(iii) Based on the preceding analyses, devise a Kernel
Relational CI Test (KRCIT) that, to the best of our knowl-
edge, offers the first practical method for testing for RCI.



(iv) Describe results of experiments with synthetic rela-
tional data that show the benefits of KRCIT relative to tra-
ditional CI tests that don’t account for the non-i.i.d. na-
ture of relational data. RCI and KRCIT offer new ways to
understand dependencies in relational data across a broad
range of practical applications.

2 PRELIMINARIES

We follow the notational conventions from statistics,
graph theory, and relational models. We use a capital let-
ter X to denote a random variable; X to denote the range
of X; and a lowercase letter x to denote the value of X .
Calligraphic letters are also used to represent mathemat-
ical objects, e.g., graphs.

We define a labeled (directed or undirected) graph G =
〈V,E,L〉where V denotes a set of vertices (or nodes) and
E a set of edges. Each vertex is assigned a discrete label
by a labeling function L : V 7→ Σ where Σ is a set of la-
bels. We disallow self-loops. Given an undirected graph
G, a connected component G′ is a vertex-induced sub-
graph of G where there exists a path between every pair
of vertices in G′. We denote all connected components in
G by CCG and a connected component containing v ∈ V

by CCG
v . Two labeled graphs G and G′ are said to be iso-

morphic, denoted by G ∼= G′, if there exists a bijective
function f : V 7→ V′ such that ∀v∈VL(v) = L′(f (v))
and ∀u,v∈V (u, v) ∈ E⇔ (f (u) , f (v)) ∈ E′.

We use a simplified version of Entity-Relationship (ER)
model (Chen, 1976) to describe relational data (Fried-
man et al., 1999; Heckerman et al., 2007; Maier et al.,
2013). A relational schema S = 〈E,R,A〉 describes the
relational domain of interest with a set of entity classes
E (e.g., person, student), relationship classes R (e.g.,
friend-of, son-of ), and attribute classes A (e.g., gender,
income). We refer to the union E ∪R as the set of item
classes I. In general, a relationship class R ∈ R can be
n-ary where n ≥ 2 (e.g., contract is a set of ternary re-
lationships involving products, buyers, and sellers). We
use A (I) to denote an item class I’s attribute classes,
and A−1 (X) by to denote the item class of X.

A relational skeleton σ ∈ ΣS is an instantiation of a
given relational schema, which can be viewed as an undi-
rected bipartite graph. We denote by σ (I) a set of items
of an item class I ∈ I. Given an item i ∈ σ (I), we use
i.X to denote the item i’s attribute classX . Note that i.X
is a random variable which takes a value i.x ∈ X. An
edge (i, r) ∈ σ represents the participation of an entity i
in a relationship r. For simplicity, we represent a skele-
ton, whose relationship classes are binary, as an undi-
rected graph of entities. We use “relational structure” to
mean the the graphical structure of a relational skeleton,
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Figure 1: (Left) a small relational skeleton σ as an undi-
rected graph of entities of three classes, Blue, Magenta,
and Gray; and (Right) an example of a relational vari-
able V where V (`) refers to the multiset of attribute X
of a set of Gray items forming a triangle with the given
Blue item ` and a Magenta item. Hence, V (i) = {a.X};
V (j) = {c.X, d.X}; and V (k) = ∅;

and “relational data” to mean a set of data that conform
to a given relational schema. We use letters such as i and
j to stand for integers or items (e.g., the letters i and j to
refer two items in σ (I)).

3 CI TEST WITH RELATIONAL DATA

We define the notion of relational variables followed
by the notion of Relational Conditional Independence
(RCI). We provide both a theoretical characterization of
RCI as well as a practical approach to testing for RCI.

Consider attribute classes (attributes for short)X , Y , and
Z of a relational schema. In the absence of any relational
structure, the “data” corresponding to instantiations of
these random variables in a dataset can be naturally in-
dexed so that (xi, yi, zi) denotes the ith instance drawn
from Pxyz . However, in the relational setting, there is no
such natural index. Hence, we can use a set of items of
each item class to serve the role of an index. This index-
ing scheme generalizes the notion of the ‘ith instance’ in
an i.i.d. setting to the notion of ‘instantiated by item i’
where i ∈ σ (I) for some I ∈ I. Note that different item
classes provide different ways to index relational data.

Definition (Relational Variable). Let S = 〈E,R,A〉 be
a relational schema and σ ∈ ΣS be an arbitrary rela-
tional skeleton. A relational variable V is a function
from σ (I) for some item class I ∈ I to a subset of
{j.X | j ∈ σ (J)} for some attribute class X and item
class J such that X ∈ A (J):

V : σ (I) 7→ 2{j.X|j∈σ(J)}

where every i ∈ σ (I) is connected to j ∈ σ (J) such
that j.X ∈ V (i).

As a simple but concrete example, a relational variable
V , ‘smoking status of one’s neighbors’, is defined with



I , J both being the ‘Person’ item class,X corresponding
to the attribute class ‘smoking’, where j ∈ σ(J) where
j.X ∈ V (i) is i’s neighbor for every person i ∈ σ(I).
Given a person Arthur who has two neighbors Sally and
Sean, V (arthur) = {sally.Smoke sean.Smoke} results
a 2-dimensional random variable. In Fig. 1, we illustrate
another example of relational variables involving three
entity classes.

Understanding an item attribute, e.g., j.X , as a random
variable, V (i) (or Vi for short) is a set of random vari-
ables. The ‘value’ of Vi is denoted by vi = (j.x)j.X∈Vi ∈
X|Vi|, indexed with item attributes in Vi. In the preceding
example, varthur = {sally : False, sean : True}. Noting
that a relational variable itself is not a random variable,
we proceed to carefully define relational conditional in-
dependence. Without loss of generality, we consider the
case where the conditioning is on a single relational vari-
able although, in general, the conditioning can be on a
set of relational variables.

Definition (Relational Conditional Independence). Let
{U, V,W} be relational variables with a common do-
main, σ (I), defined on a relational schema S where
σ ∈ ΣS. Let item attributes

⋃
i∈σ(I) Ui ∪ Vi ∪ Wi be

random variables. Then, U and V are said to be indepen-
dent to each other given W , denoted by (U ⊥⊥ V |W )σ ,
if and only if

∀i∈σ(I)Puiviwi = Pui|wiPvi|wiPwi .

It is easy to see that this definition of relational CI (RCI)
generalizes traditional CI where i.i.d. samples are drawn
from Pxyz . Let U be “smoking status of oneself” and W
be “smoking status of one’s parents”, e.g., U (arthur) =
{arthur.Smoke}. We might ask (U ⊥⊥ V |W )σ: “Is
one’s smoking status independent of one’s neighbors’
smoking status given one’s parents’ smoking status?”
While, in the real world, answering such question can
be quite difficult because of the complexity and partial
observability of interactions among people, the notion of
relational CI, once operationalized, can help extract use-
ful insights from relational data.

3.1 RELATIONAL VARIABLES AND
PARAMETER TYING

In the relational setting, assuming that each item attribute
of the same attribute class is identically distributed (e.g.,
sally.Smoke d

= arthur.Smoke), would be tantamount
to ignoring the relational structure of the data. On the
other hand, if we were to let each item attribute share no
commonality whatsoever with any other item attribute,
checking for RCI becomes nearly impossible. Hence, we
restrict our attention to the practically relevant setting

where the item attributes of each attribute class share
some commonality, e.g., the joint probability distribu-
tion of all item attributes can be modeled as a directed
acyclic graph G of item attributes (Friedman et al., 1999)
(n.b. paG and anG denote values of parental and ancestral
nodes in G, respectively),

P (v) =
∏
X∈A

∏
i∈σ(A−1(X)) P

(
i.x | paG (i.X)

)
where v represents values of all item attributes in σ. For
every item of the same item class, e.g., i, j ∈ σ (I),
P(i.X | paG (i.X)) = P(j.X | paG (j.X)) is of-
ten assumed if paG (i.X) and paG (j.X) are matched
under model-specific assumption, e.g., their averages
are the same (Friedman et al., 1999) (i.e., the ratio of
one’s smoking neighbors to one’s neighbors). This is
called parameter-tying or templating (Koller, 1999) and
is widely used in relational or temporal domains to cap-
ture time-invariant aspects of the domain. We relate pa-
rameter tying and item attributes to the homogeneity (in
the sense of being identically distributed) and indepen-
dence of random variables. Let G ∼=i,j G′ denote graph
isomorphism between G and G′ subject to the constraint
that vertex i ∈ G must be matched to j ∈ G′.
Proposition 1 (Identically Distributed Random Vari-
ables). Let G be a directed acyclic graph representing
a conditional independence structure of item attributes
where each item attribute, e.g., k.X , is labeled with its
attribute class, e.g., X . Given that the parameters are
tied, random variables i.X and j.X in G are identically
distributed if G

[
anG (i.X)

]
ui.X,j.X G

[
anG (j.X)

]
.

Proposition 2 (Independent Random Variables). Two
random variables i.X and j.X are independent if
G
[
anG (i.X)

]
∩ G

[
anG (j.X)

]
= ∅.

Proofs for both propositions directly follow from Markov
condition that a random variable is independent of its
non-descendants given its parents in a DAG G. For an
undirected graph G of item attributes (e.g, Markov ran-
dom field) labeled as above, CCG

i.X
∼=i.X,j.X CCG

j.X

and CCG
i.X 6= CCG

j.X would be a sufficient condi-

tion for i.X, j.X i.i.d.∼ P for some distribution P under
the parameter-tying assumption where graph isomorphic
maximal cliques share the same parameters.

However, we have no access to the underlying CI struc-
ture G of item attributes. Hence, we deduce an i.i.d. con-
dition through items on an observed skeleton σ:
Assumption 3. Let S = 〈E,R,A〉 be a relational
schema and σ be a relational skeleton of S. Let i and
j be items in σ and X ∈ A (I) of I ∈ I. Then, random
variables i.X and j.X are independent and identically
distributed if

(CCσi ∼=i,j CCσj ) ∧ (CCσi 6= CCσj )



Note that the condition is sufficient but not necessary
for the random variables corresponding to the item at-
tributes to be i.i.d. This is based on our understand-
ing of how parameter-tying assumption is realized in a
given relational structure and determines the qualitative
aspects (i.e., homogeneity and independence) of the ran-
dom variables corresponding to the item attributes.

3.2 HANDLING NON-I.I.D. VARIABLES

It is possible that a relational structure induces depen-
dent and non-identically distributed (i.e., heterogeneous)
item attributes even when parameter tying is assumed.
Hence, we cannot simply apply a traditional CI test to
test (U ⊥⊥ V |W )σ on the flattened version of relational
data {(ui, vi, wi)}i∈σ(I) where σ(I) is the common do-
main of U , V , and W .

Our solution to this problem is to perform CI tests by
decomposing, with respect to a given RCI query, the set
of items σ (I) into subsets of items such that each sub-
set yields a set of i.i.d. observations under the above as-
sumption. Consider a function id : σ (I) 7→ Z such that
for id (i) = id (j) only if (ui, vi, wi)

d
= (uj , vj , wj)

and (ui, vi, wi) ⊥⊥ (uj , vj , wj) (i.e., CCσi ∼=i,j CCσj and
CCσi 6= CCσj given that U , V , and W are isomorphism-
invariant, see Appendix for definition). Then, a tradi-
tional CI test, treating U , V , and W as random variables,

U ⊥⊥ V |W, id

will remove bias introduced by the relational structure
provided we have large enough samples per condition
(i.e., a large number of CCs per isomorphic class). Such
a naive solution, however, has severe limitations in prac-
tice: i) It is possible, in the worst case, that all items in re-
lational data are connected and ii) Each connected com-
ponent might be non-isomorphic to others.

4 A KERNEL RELATIONAL CI TEST

To address the limitations noted above, we will relax the
requirements that the connected components be isomor-
phic and that items be partitioned into non-overlapping
connected components. Recent progress in kernel-based
nonparametric tests (e.g., two-sample tests or CI) al-
lows us to utilize the notion of closeness between sam-
ples to test for homogeneity or conditional independence.
We proceed to show how kernel-based conditional in-
dependence tests, originally introduced for testing inde-
pendence of i.i.d. random variables from data, can be
adapted to the relational setting, by defining a novel ker-
nel function for relational variables.

4.1 KERNEL FOR RELATIONAL VARIABLES

We provide kernels for relational variables that reflect
our understanding of relational structure as in Section
3.1. Consider a relational variable U , associated with
the attribute class X . A kernel function for U , kU , mea-
sures similarity between two instantiations of U where
each instantiation, e.g., ui ∈ X|Ui|, consists of a set of
item attributes. We illustrate our approach using the R-
convolution kernel (Haussler, 1999), which computes the
kernel over two sets as the sum of kernel values for every
pair of elements from two sets. Thus, we define kU as

kU
(
ui, uj ; k

X
IA

)
=
∑
a.X∈Ui

∑
b.X∈Uj k

X
IA (a.X, b.X)

(1)
where the base kernel kXIA (a.X, b.X) measures the sim-
ilarity between two item attributes. Based on the anal-
ysis in Section 3.1, Ui and Uj do not necessarily yield
identically-distributed item attributes. Hence, we design
kXIA (a.X, b.X) by taking both homogeneity and attribute
values into consideration: kXIA is defined as a product ker-
nel of the kernel for homogeneity kσ and a kernel for
attribute values kx:

kXIA (a.X, b.X) = kσ (a, b) kx (a.x, b.x)

where the kernel for attribute values is typically defined
using a standard kernel for the data type, for example, a
Gaussian RBF kernel if X ⊆ Rd. We elaborate the kernel
for homogeneity kσ below.

Kernel for Homogeneity (Among Item Attributes)
We postulate that two random variables a.X and b.X
will be similarly distributed if the corresponding items
appear in similar contexts in σ, i.e., similarly intercon-
nected neighbors in σ. Therefore, the degree to which
two item attributes a.X and b.X are identically dis-
tributed can be approximated by the similarity of the con-
text of a and the context of b in σ.

We use h-hop neighbors of an item in σ to induce a con-
text of the item for practicality since a connected com-
ponent, e.g., CCσa , can be as large as the given relational
skeleton σ. Thus, we design the kernel for homogeneity
kσ (a, b) as a graph kernel between two labeled graphs
σ [neσh (a)] and σ [neσh (b)] where neσh (a) is a set of
items in σ that are reachable in no more than h hops from
item a in σ. Each item in a context, e.g., σ [neσh (a)], is
labeled with its item class except the item a, which is as-
signed to a special label allowing a graph kernel between
σ [neσh (a)] and σ [neσh (b)] to match a and b. This reflects
‘ui,j’, graph isomorphism with an additional constraint
(Assumption 3).

We choose to exploit an existing graph kernel for
labeled graphs. For example a shortest-path ker-
nel (Borgwardt and Kriegel, 2005) is given by



kSP (G,G′) =
∑
c,d∈V

∑
c′,d′∈V′ kn (c, c′) · kn (d, d′) ·

kl (dG (c, d) , dG′ (c
′, d′)) with the choice of kernels on

node (i.e., item) kn and on shortest path length kl where
dG (c, d) is a shortest path length between c and d in G.
We use the Dirac kernel for both kn and kl, that is, kn is
1 if two items have the same label and 0, otherwise, and
kl is 1 if two lengths are the same and 0, otherwise.

Kernel for Homogeneity (Among Observations) The
use of contexts does not supplant the role of the indicator
id. Hence, we introduce a new variable G to play the
role of id without dealing with dependent observations.
With G, the question of RCI, (U ⊥⊥ V | W )σ , becomes
that of traditional CI, U ⊥⊥ V | W,G and, similarly, an
unconditional query (U ⊥⊥ V )σ becomes U ⊥⊥ V | G.

We have already seen the kernel for relational variable
which considered both contexts and values. Taking the
value part out from the definition of the kernel, we can
get a kernel for homogeneity among observations. Since
an observation consists of three (two if unconditional)
relational variables, we use a product kernel. We define

kG(i, j) = kU (ui,uj ; kσ) kV (vi,vj ; kσ) kW (wi,wj ; kσ)
(2)

Note that while we have used the R-convolution kernel
for relational variables and the shortest-path kernel as our
graph kernel to illustrate our idea, the approach can ac-
commodate other kernels, e.g., the optimal assignment
kernel (Kriege et al., 2016) for relational variables and a
Weisfeiler-Lehman kernel (Shervashidze et al., 2011) for
graphs. In practice, the choice of kernel can be guided by
the knowledge of the domain.

4.2 TREATING DEPENDENT OBSERVATIONS

Now we briefly discuss how we can handle depen-
dent observations. In relational data, the dependencies
among observations can arise for different reasons. In
previous section, we showed that two item attributes
become dependent if they share the same ancestors
(Proposition 2). However, in some settings, we can ig-
nore some types of dependence among observations.
For instance, consider a hidden Markov model with
hidden variables X and observed variables Y where
Xt−1 ⊥⊥ Yt | Xt and P (Yt | Xt) and P (Xt | Xt−1)
are time-invariant. Simply running a traditional CI test
on a sample {(xt−1, yt, xt)}nt=2 would likely result in
the null hypothesis not being rejected in spite of cor-
relations among observations, e.g., (Xt−1, Yt, Xt) and
(Xt−2, Yt−1, Xt−1). Variables likeXt andXt−1 are nat-
urally represented as (temporally) related variables, the
dependencies among which can be broken by condition-
ing on an appropriate set of variables. In this regard,

Algorithm 1 KRCIT

Input: σ: relational data; U , V , W : relational variables of base
item class I; kU , kV , kW : kernels for U , V , W ; kσ: a kernel
for subgraphs of items; CI: the base kernel-based CI test
1: Ω← {(ui, vi, wi)}i∈σ(I), which is (u,v,w)

2: kG(·, ·)← kU (·, ·; kσ)kV (·, ·; kσ)kW (·, ·; kσ)
3: Ku,Kv,Kw ←kernel matrices for u, v, and w.
4: Kg ←kernel matrix for (u,v,w) with kG
5: Kwg ← Kw �Kg

6: return CI (Ku,Kv,Kwg)

we treat ‘dependent observations’ to be resolved explic-
itly through conditionals instead of being implicitly re-
moved, e.g., non-i.i.d. CI test for autocorrelated data
(Flaxman et al., 2016).

4.3 VALIDITY OF FLATTENING APPROACH

We provide a sufficient condition under which a flattened
sample of relational data conditioned on G correctly
transforms the question of an RCI query (U ⊥⊥ V |W )σ
to a traditional CI query U ⊥⊥ V | W,G. We con-
sider the alternative hypothesis (U 6⊥⊥ V |W )σ to satisfy
∀i∈σ(I)Ui 6⊥⊥ Vi |Wi instead of just ∃i∈σ(I)Ui 6⊥⊥ Vi |Wi.

Condition 4. Ui, Vi ⊥⊥ Uj , Vj | Wi and

(wi, gi = wj , gj) → (Ui, Vi)
d
= (Uj , Vj) for every

i 6= j ∈ σ (I).

This condition simply makes a set of (U, V ) samples into
a set of i.i.d. samples where either U ⊥⊥ V or U 6⊥⊥ V
holds for each condition. In addition to the first condi-
tion, we provide a relaxed sufficient condition only for
the null hypothesis.

Condition 5. Vi ⊥⊥ Vj | Wi and (wi, gi = wj , gj) →
Vi

d
= Vj for every i 6= j ∈ σ (I).

This condition only makes V i.i.d. for each condi-
tion. However, it is sufficient to observe U ⊥⊥ V if
∀i∈σ(I)Ui ⊥⊥ Vi | Wi. Otherwise, U 6⊥⊥ V | W,G will
hold in most cases unless the aggregation of (Ui, Vi) per
condition makes such dependence vanish.

4.4 ALGORITHM

By supplying customized kernels for U , V , W , and G
(Equation 1 and 2), a kernel CI test in an i.i.d. setting
will decide whether to accept or reject the null hypoth-
esis given a flattened sample Ω. We illustrate the pseu-
docode of the kernel relational conditional independence
test, KRCIT, in Algorithm 1. If the given query is uncon-
ditional such that W is undefined, then Kw = 1.

We considered the following two kernel-based condi-
tional independence tests as a base CI test for KRCIT:



Kernel CI Test (KCIT, Zhang et al., 2011) which uses
the norm of conditional cross-covariance operator in
RKHS (reproducing kernel Hilbert space); and Self-
Discrepancy CI Test (SDCIT, Lee and Honavar, 2017)
which uses RKHS distance between the given sample
representing Pxyz and the sample modified to mimic
Px|zPy|zPz . The time complexity of KRCIT will depend
not only on the size of flattened sample but also the car-
dinality of relational variables, and the size of subgraphs
(i.e., hops), etc. If the cardinality of relational variables
and the number of hops used to specify contexts are fixed
to small constants, computing kernel matrices requires
O
(
n2
)

time where n is the size of flattened sample.
Then, the time complexity of KRCIT with KCIT as a base
CI test is O

(
n3
)

since that of KCIT is O
(
n3
)
.

5 EMPIRICAL EVALUATION

We report results of experiments that examine the per-
formance of KRCIT in testing RCI on relational data us-
ing synthetic relational data where we know the ground
truth RCI. We used RCM (Maier et al., 2013; Lee and
Honavar, 2016), which is a generative model for rela-
tional data where a set of assumed causal relationships
among relational variables specifies how values of item
attributes are generated given a relational skeleton.

5.1 METHODS

We compare the performance of KRCIT, traditional CI
tests that do not account for the relational structure of the
data, and an alternative RCI test that makes use of con-
text using residualization (Flaxman et al., 2016) where
regression is used to remove dependence of a variable
on a set of conditionals. For example, assume that one
wants to test X ⊥⊥ Y where X and Y are two time se-
ries. By regressing each X and Y on time T , one can
obtain εx|t = X − Ê [X|T ] and εy|t = Y − Ê [Y |T ].
Then, the test becomes εx|t ⊥⊥ εy|t under a set of as-
sumptions. In the case of RCI, one can residualize val-
ues in the given relational skeleton to remove depen-
dence on the ‘context’ of each attribute value. Formally,
let X,Z ∈ Rm be two random variables where we seek
for εx|z such thatX = f (Z)+εx|z . We can train a Gaus-
sian process regression, i.e., f ∼ GP (0, k), by maximiz-
ing total marginal likelihood. Then, εx|z = X − X̂ =(
I + σ−2K∗z

)−1
X . Both K∗z and σ2 are learned through

Gaussian process regression employing, e.g., a Gaussian
RBF kernel and a white noise kernel.

Assume that we only have access to kernel matrices Kx

and Kz . Following Zhang et al. (2011), we can use the
empirical kernel map for x, ψx = VΛ

1
2 , where V and

Λ are obtained through the eigendecomposition of the

kernel matrix Kx = V>ΛV. Similarly, we can obtain
ψz . Then, a Gaussian process regression with a linear
kernel and a white noise kernel can be used to learn K∗z .
In this case, we focus on the kernel matrix for residuals
given by Kx|z = RKxR where R =

(
I + σ−2K∗z

)−1
.

Following Flaxman et al. (2016), we use the expectation
of Kx|z , which is given by K∗zR + RKxR.

We list methods to be compared in our experiments.
(Naive): We use Hilbert-Schmidt Independence Crite-
rion (HSIC, Gretton et al., 2005) for unconditional cases
which uses the eigenspectrum of covariance operators
in RKHS. Otherwise, either KCIT or SDCIT is used.
(Residualized): We residualize values of a given rela-
tional skeleton based on contexts (i.e., replace values to
its residuals). Then, aforementioned naive tests are used.
We append a prefix ‘R-’ to denote ‘residualized’. (Resid-
ual Kernel): Residuals are computed in RKHSs and
the kernel for residuals is obtained as described above.
Then, naive tests are used where computing kernel for
two values (e.g., an RBF kernel) is replaced by looking
up the residual kernel matrix. We append a prefix ‘RK-
’. (KRCIT): We use a postfix ‘-K’ or ‘-SD’ to denote
KRCIT with KCIT or with SDCIT, respectively.

We implemented KRCIT and other kernel CI tests in
Python.1 Throughout experiments, we considered real-
valued attributes and an RBF kernel, e.g., kx (x′, x′′) =
exp

(
−γx‖x′ − x′′‖2

)
, is used for each attribute where

γ· is chosen as
(
2σ2
)−1

where σ2 = 0.12 is the
variance of Gaussian noise we used in data gen-
erating processes. Additionally, we normalized both
R-convolution kernel and shortest-path kernel, i.e.,
k′ (a, b) = k (a, b) /

√
k (a, a) k (b, b). We report how

correctly null hypothesis is rejected by a given test
(power) measured by Area Under Power Curve (AUPC),
which is area under cumulative density function of p-
values, and how incorrectly null hypothesis is rejected
measured by type-I error rates given α = 0.05.

5.2 A SIMPLE EXAMPLE FOR
VISUALIZATION

We start with a simple example that explains how and
why KRCIT is better for relational CI testing than stan-
dard CI tests that assume i.i.d. data. For the sake of read-
ability, we omit unnecessary details (detailed descrip-
tions are provided in Appendix). We considered a rela-
tional schema where attribute class X and Y associates
with entity class ‘circle’ and ‘square’, respectively. There
are other item classes and attribute classes in the schema.
A relational skeleton σ consists of CCs of four differ-

1Codes are available online at https://github.com/
sanghack81/KRCIT and https://github.com/
sanghack81/SDCIT.

https://github.com/sanghack81/KRCIT
https://github.com/sanghack81/KRCIT
https://github.com/sanghack81/SDCIT
https://github.com/sanghack81/SDCIT


X Y Y Y YX X X

Figure 2: Four connected components composing a rela-
tional skeleton.

Original Permuted (KRCIT) Permuted (SDCIT)
Null and Homogeneous (randomized)

Alternative and Homogeneous (randomized)

Null and Heterogeneous (randomized)

Alternative and Heterogeneous (randomized)

Figure 3: Comparisons of the given data (left) and two
samples under the null hypothesis using KRCIT with SD-
CIT (center) and by SDCIT (right), respectively, with
randomized relationships

ent structures as shown in Fig. 2. We designed a gen-
erative model such that X is a function of the value in
an adjacent ‘rhombus’ item and Y is a function of X in
an adjacent circle and the value in an adjacent ‘triangle’
item. That is, we make sure that i.X and j.X are not
identically-distributed if i is adjacent to a rhombus item
while j is not. The same idea also applies to Y s.

We controlled randomness of relationships between cir-
cles and squares: non-random relationship represents that
a resulting relational skeleton consists only circles adja-
cent to a rhombus are connected to squares adjacent to
a triangle (1st and 4th components in Fig. 2) while ran-
domized relationship exhibits a relational skeleton where
all four components are balanced. We also controlled het-
erogeneity: the extent to which distributions of (X,Y ) of
different components diverges from each other.

In the left column of Fig. 3, we visualize four relational
data based on the combinations of underlying hypothe-

Null and Heterogeneous (biased)

Alternative and Heterogeneous (biased)

Figure 4: Comparisons with fully biased relationship
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Figure 5: Type-I errors (with 20 trials) varying both non-
randomness and heterogeneity

sis and heterogeneity where color codes correspond to
the types of structure which associates with the value
(x, y) in Fig. 2. Utilizing permuted samples, we visu-
alize how KRCIT (with SDCIT) and SDCIT, which is a
permutation-based test, produce data consistent with the
null hypothesis. KRCIT permutes Y s conditioning on G,
which corresponds to ‘color’, while SDCIT simply shuf-
fles Y s. The center and right columns correspond to the
permuted sample under KRCIT and a naive test, respec-
tively. When contexts more strongly correlate with val-
ues, we can more clearly observe the difference between
the permuted samples by KRCIT and by SDCIT.

For each row, if the center plot is significantly differ-
ent from its corresponding left plot, KRCIT would reject
the null hypothesis. For example, KRCIT correctly rejects
the null hypothesis for the samples from the alternative
hypothesis (row 2nd and 4th). Interestingly, SDCIT also
correctly rejects samples from the alternative hypothesis.
In Fig. 4, we plot null samples when relational skeletons
exhibit biased relationships. We can similarly observe
difference between two tests. Fig. 5 illustrates type-I er-
rors (given α = 0.05) of a naive test (HSIC) and KRCIT-
SD based on relational skeletons generated with various
degrees of heterogeneity and non-randomness of rela-
tionship. KRCIT-SD is robust to heterogeneity and non-
random relationships while HSIC is not. Note that resid-
ualization approaches utilizing contexts perform similar
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Figure 6: AUPCs with varying dependency where re-
lational skeletons are generated with homogeneous and
randomized relationships (left) and with heterogeneous
and biased relationships (right).

to KRCIT (see Appendix).

Finally, we illustrate the changes of power of different
tests as the strength of dependency between X and Y
is increased (Fig. 6). Tests that use contexts consistently
estimates dependency without regard to the underlying
conditions while HSIC over-rejects samples from weak
dependence in certain conditions where rejection comes
partially from other than linear dependence (4th row in
Fig. 3). In summary, whenever contexts provide suffi-
cient information to infer (non-)identically distributed
observations, KRCIT is able to eliminate suspicious de-
pendencies due to such heterogeneity.

5.3 MORE COMPLICATED STRUCTURES

We conduct a similar experiment but with more com-
plicated and larger structures where the cardinality of
relational variables is not one and observations are de-
pendent. Such dependence among observations, e.g., two
circles, is due to their sharing a common cause, e.g.,
a rhombus. In this experiment, we additionally inves-
tigate how different sizes of subgraphs as contexts af-
fect the performance of RCI tests. Contexts based on
1-hop subgraphs contain sufficient information while 2-
hop subgraphs will include information about other vari-
able, e.g., a 2-hop subgraph of a circle includes triangle
and other circles connected to common rhombuses.

For tests for the null hypothesis, we obtained similar
results as in the previous section. However, the kernel-
based residualization approach (RK-HSIC) shows higher
type-I errors than expected when larger contexts are em-
ployed (see Appendix). KRCIT performed as desired even
with larger contexts. For tests for alternative hypothe-
sis, we report AUPC in Fig. 7. With properly-sized con-
texts (hop=1), both residualization-based methods per-
form well. However, they are sensitive to the choice of
contexts – the power of both R-HSIC and RK-HSIC drops.
Both these KRCIT methods are relatively weaker than any
other tests when dependence between relational variables
is not strong enough. However, KRCIT with SDCIT seems
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Figure 7: AUPCs with hop=1 (top) and hop=2 (bottom)
under two different settings for relational skeletons

robust to the choice of contexts and achieves high AUPC
as the dependence increases.

5.4 CONDITIONAL TESTS

We investigated whether KRCIT would be able to dis-
cover the causal structure of synthetic relational data
generated from an RCM. Thus, we focus on testing 1)
relational version of Markov condition, which is essen-
tial to learn the undirected causal structure, and 2) con-
ditional dependence, which is critical to infer the orien-
tation of undirected causal relationships. We constructed
a set of relational skeletons of 3 entity classes and 3 re-
lationship classes between every pair of entity classes.
We controlled for the maximum number of neighbors of
the same item class of an item (e.g., a circle item can
have at most three square neighbors) and the number of
entities per entity class. We generate relational skeletons
to exhibit correlation among different relationships (see
Appendix for details). Then, values are generated based
on two hypotheses. For the null hypothesis, we gener-
ate values, roughly, in a causal order X → Z → Y or
X ← Z → Y . For the alternative hypothesis, a relational
data is generated based on a causal order X → Z ← Y .
We test (U ⊥⊥ V |W )σ where U , V , and W associates
with X , Y , and Z, respectively.

In Fig. 8, we plot AUPCs and type-I error rates under
different sizes of flattened sample, maximum cardinali-
ties of relationships, and the sizes of contexts in terms
of hops. The left plots demonstrate that the power of all
tests increases as larger sample is used (with max 3 re-
lationships and hop 1). However, KRCIT with KCIT as
a base CI test suffers high type-I error rates. The center
plots depict the negative effect of more complex structure
on both power and type-I errors. This implies the general
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Figure 8: AUPCs and type-I error rates of various tests with relational skeletons generated with different settings and
tests employed different size of subgraphs as contexts.

approach to handling multiple values (i.e., using an R-
convolution kernel) should properly modified when large
relationships are involved (e.g., friends). Unlike previous
experiments with unconditional RCI tests, it is surpris-
ing to observe that the power of naive tests decreases as
underlying structure is more complex. Finally, contexts
larger than necessary makes some tests weaker and less-
calibrated (right plots). However, we observed that con-
texts with hop set to 4 are similar to each other. That
is, the kernel matrix obtained by applying shortest-path
kernel on contexts contains similar values and can not
clearly inform heterogeneity among random variables.

Overall, the naive tests that do not account for relational
structure performed well for the null hypothesis yield-
ing type-I error rate around 0.05 since, in our genera-
tive model, Z ‘values’ provide all the necessary infor-
mation to infer Y . However, they showed weak power
compared to others in general. Both residualization ap-
proaches perform very well when proper contexts are
employed. KRCIT performs very differently depending
on the choice of base CI test. KCIT, which also uses resid-
ualization as an internal mechanism to handle condition-
als, seems to have problems dealing with G, a condition-
ing variable playing a role of id. KRCIT with SDCIT is,
in general, a good choice since it provides a reasonable
power with a precise control of type-I error rates.

6 DISCUSSION

Maier et al. (2013) considered relational d-separation, a
problem closely related to RCI. However, they relied on
a traditional CI test by simply flattening and aggregat-
ing relational data (i.e., average) without incorporating
structural information. As we have shown, such an ap-
proach biases the results of independence tests (Section
5.2). An independence test on two non-i.i.d. data sets is
addressed by Zhang et al. (2009), who considered gener-
alizing HSIC to the setting of structured and interdepen-
dent observations. However, their work focused on ex-
plicitly known CI structures which can be represented as
undirected graphical models utilizing factorization pro-

vided by the exponential family.

In this paper, we have defined CI in the relational setting
and provided an effective approach to testing for RCI.
Our definition makes use of a definition of a relational
variable that subsumes the notions of slot chains in prob-
abilistic relational models (Friedman et al., 1999), rela-
tional path in relational causal models with bridge burn-
ing semantics (Maier et al., 2013) and path semantics
(Lee and Honavar, 2016), and first order expression in
DAPER (Heckerman et al., 2007).

7 SUMMARY AND FUTURE WORK

In this work, we defined relational conditional indepen-
dence (RCI), the generalization of CI to a relational set-
ting with the language of Entity-Relationship model. We
proposed kernel RCI test (KRCIT), a first practical and
general design of RCI test which reduces bias caused
by an underlying relational structure. We empirically
demonstrated benefits of KRCIT compared to naive CI
tests on simulated relational data.

Some directions for future work include: improving
KRCIT by employing appropriately designed graph ker-
nels and optimizing the kernel parameters; a more com-
prehensive experimental study of KRCIT using real-
world relational data; investigating a way to incorporate
network analysis before performing RCI test to guide the
design of kernels; and applying RCI to discover causal
relationships in relational domains (Maier et al., 2013;
Lee and Honavar, 2016).
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A ISOMORPHISM-INVARIANT
RELATIONAL VARIABLE

We describe a desired property of a relational variable.
This property ensures that the interpretation of relational
variable is consistent across graph isomorphic connected
components of any relational skeleton σ ∈ ΣS. Let
S = 〈E,R,A〉 be a relational schema and σ ∈ ΣS

be an arbitrary instantiation of the schema. Let CCσa =
〈Va,Ea,La〉 and CCσb = 〈Vb,Eb,Lb〉 where each item
is labeled with its item class. Let fσa,b be a set of map-
ping functions demonstrating CCσa ∼=a,b CCσb , that is,
fσa,b = {f | ∀v∈VaLa(v) = Lb(f (v))∧∀u,v∈Va (u, v) ∈
Ea ⇔ (f (u) , f (v)) ∈ Eb ∧ f (a) = b}. Let U be a re-
lational variable with domain σ (I) where I ∈ E ∪ R.
If

∀f∈fσa,b {f (i) | i.X ∈ Ua} =
{
j | j.X ∈ Uf(a)

}
for any a, b ∈ σ (I) for any σ ∈ ΣS, then, U is said to be
isomorphism-invariant.

B EXPERIMENTAL SETUP

We describe experimental settings with the language of
relational causal model (Maier et al., 2013). For simplic-
ity, we represent a relational skeleton as an undirected
graph of entities. Hence, (a, b) ∈ σ represents that two
entities a and b are, in fact, connected to a common rela-
tionship item in the relational skeleton σ.

B.1 SIMPLE EXPERIMENTS

Relational Schema There are four entity classesA,B,
C, and D where each associates with attribute class X ,
Y , S, and T , respectively. There are three relationship
classes between A and B, A and C, and B and D. We
used circle, square, rhombus, and triangle to refer A, B,
C, and D.

Relational Skeleton We generate relational skeletons
varying degrees of randomness from 0 to 1 where ran-
domness of 0 is referred to as ‘biased’. Given random-
ness 0 ≤ p ≤ 1, we initially generate a fully biased
relational skeleton σ, then randomize some of edges be-
tween σ (A) and σ (B) to acquire a relational skeleton of
desired randomness p.

Let n be the number of entities for each of A and B (we
set n = 200). There are n/2 entities forC andD, respec-
tively. Hence, let σ (A) = {ai}ni=1, σ (B) = {bi}ni=1,
σ (C) = {ci}n/2i=1, and σ (D) = {di}n/2i=1. We connect C
items toA items andD items toB items, {(ai, ci)}n/2i=1 ⊂
σ and {(bi, di)}n/2i=1 ⊂ σ. Then, we “initially” connect ai

and bi, {(ai, bi)}ni=1 ⊂ σ. That is, by design, an A item
having (or not having) a C neighbor is connected to a
B item having (or not having) a D neighbor. Given the
randomness p, we randomly pick np B items and shuffle
their A neighbors.

Relational Causal Model We use a linear Gaussian
noise model with sum aggregators as follows:

∀c∈σ(C) c.S = µ+ εc

∀d∈σ(D) d.T = µ+ εd

∀a∈σ(A) a.X =
∑

c∈neσ(a)∩σ(C)

c.S + µ+ εa

∀b∈σ(B) b.Y =
∑

a∈neσ(b)∩σ(A)

β · a.X+

∑
d∈ne(b;σ)∩σ(D)

d.T + µ+ εb

where every ε is an independent Gaussian noise with zero
mean and variance 0.12. We control the correlation be-
tween connected X and Y by adjusting β where β = 0
implies that X and Y are independently generated, or
more precisely, [A] .X and [A,RAB , B] .Y are indepen-
dent. The pair of X and Y values generated from this
model can be understood as a mixture of four bivariate
normal distributions and µ controls the distance between
distributions. When µ = 0 , all four distributions are cen-
tered at (0, 0). Although, we described four distributions
having the same mean as ‘homogeneous’, they have dif-
ferent variances.

We test unconditional independence between [A] .X and
[A,RAB , B] .Y .

B.2 MORE COMPLICATED EXPERIMENTS

We only change how skeletons are generated. We use the
same relational schema and relational causal model as
shown above.

Relational Skeleton Similarly, we generate n = 400
items for A and B and n/2 items for C and D. Then,
each ai ∈ σ (A) randomly chooses C neighbor(s) so that
ai has one C neighbor if 1 ≤ i ≤ n

3 , two neighbors if
n
3 < i ≤ 2n

3 , and three neighbors if 2n
3 < i ≤ n. Simi-

larly, each bi ∈ σ (B) randomly chooses D neighbor(s).
As shown in the previous setup, we initialize relational
skeleton with biased relationships betweenA andB, that
is, {(ai, bi)}ni=1 ⊂ σ. Then, we randomize the connec-
tion based on randomness parameter. We further add n
random connections between σ (A) and σ (B).

This setup yields more complicated structure than
the previous setup since each of {a.X}a∈σ(A) and



{b.Y }b∈σ(B) is made of dependent observations and A
and B are in many-to-many relationships.

B.3 CONDITIONAL TESTS

Relational Schema We have three entity classes A, B,
and C, which associates with X , Y , and Z, respectively.
There are binary relationship classes for each pair of en-
tity classes, i.e., RAB , RAC , and RBC . All cardinalities
are ‘many’, hence an entity can have many neighbors of
the other entity class.

Relational Skeleton We control the maximum number
of neighbors of the same kind. For example, an item of
A can have at most k neighbors of B. In other words,
∀ai∈σ(A) |neσ (ai) ∩ σ (B)| ≤ k. We similarly put re-
strictions between B and C and between A and C, as
well.

We construct relational skeletons where relationships of
all three classes (RAB , RBC , and RAC) are correlated.
To do so, we adopt the idea of latent space model-
ing. Given n, the number of entities per entity class,
we generate n points in [0, 1]

2 ⊂ R2 for each entity
class. Let φ (·) be the coordinate of an item. Let DAB

be a squared Euclidean distance where
(
DAB

)
i,j

=

‖φ (ai) − φ (bi)‖22 . Then, a kernel matrix KAB is(
KAB

)
i,j

= exp
(
−γ ·

(
DAB

)
i,j

)
where we chose

γ = 50. By normalization, we get a probability ma-
trix PAB = KAB

(1>·KAB ·1) to (approximately) model
Pr ((ai, bj) ∈ σ) ∝ 2

(
PAB

)
i,j

. With this probability,
we sample nk/2 edges to form a relational skeleton
while satisfying maximum number of neighbors k. For
example, if we limit an item of A can have three neigh-
bors of B, then, there are, on average, 1.5 B neighbors
for an item of A. Edges between A and C and between
B and C are similarly obtained.

Relational Causal Model We consider three different
models: two for conditional independence and one for
conditional dependence. For testing null hypothesis, we
randomly choose one of following two models:

∀a∈σ(A) a.X = µ+ εa

∀c∈σ(C) c.Z =
∑

a∈neσ(c)∩σ(A)

a.X + µ+ εc

∀b∈σ(B) b.Y =
∑

c∈neσ(b)∩σ(C)

c.Z + µ+ εb

and

∀c∈σ(C) c.Z = µ+ εc

∀a∈σ(A) a.X =
∑

c∈neσ(a)∩σ(C)

c.Z + µ+ εa

∀b∈σ(B) b.Y =
∑

c∈neσ(b)∩σ(C)

c.Z + µ+ εb.

For testing alternative hypothesis, we use the following
model where (roughly speaking) Z is a common effect
of X and Y ,

∀a∈σ(A) a.X = µ+ εa

∀b∈σ(B) b.Y = µ+ εb

∀c∈σ(C) c.Z =
∑

a∈neσ(c)∩σ(A)

a.X+

∑
b∈neσ(c)∩σ(B)

b.Y + µ+ εc.

In all experiments, we set µ = 0.3. We test

[B] .Y ⊥⊥ [B,RAB , A] .X | [B,RBC , C] .Z

for the null hypothesis and test

[C,RAC , A] .X ⊥⊥ [C,RBC , B] .Y | [C] .Z

for the alternative hypothesis.

C TYPE I ERRORS FOR DIFFERENT
METHODS

We illustrate type-I error plots for Section 5.2 and 5.3.
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Figure 9: Type-I errors of different methods for Section
5.2.
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Figure 10: Type-I errors of different methods with two
different contexts based on hop=1 (left) and hop=2
(right) for Section 5.3. HSIC does not use contexts.
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