

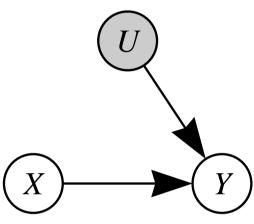
### Overview

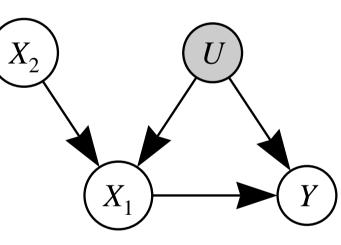
A Structural Causal Model (SCM)  $\mathcal{M}$  is a 4-tuple  $\langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ : ► **U** is a set of **unobserved** variables (**unknown**); ► V is a set of **observed** variables ( known); **F** is a set of **causal mechanisms** for **V** using **U** and **V**;  $\triangleright$   $P(\mathbf{U})$  is a joint distribution over the **U** (randomness). The **SCM** allows one to model the underlying causal relations (usually unobserved). The environment where the MAB solver will perform experiments can be modeled as an **SCM**, following the connection established next. There are arms  $\mathbf{A}$  in the bandit (i.e., slot machine); each arm associates with a reward distribution, SCM-MAB an agent plays the bandit by pulling an arm  $A_{\mathbf{x}} \in \mathbf{A}$  each round, SCM  $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, \mathbf{P}(\mathbf{U}) \rangle$  and a reward variable  $\mathbf{Y} \in \mathbf{V}, \langle \mathcal{M}, \mathbf{Y} \rangle$ ► Arms A correspond to *all* interventions  $\{A_x | x \in D(X), X \subseteq V \setminus \{Y\}\}$ . to minimize a cumulative regret (CR) over time horizon T. ► Reward: distribution  $P(Y_x) := P(Y|do(X = x))$ , expected,  $\mu_x := \mathbb{E}[Y|do(X = x)]$ . Multi-armed Bandit through Causal Lens We assume that a causal graph  $\mathcal{G}$  of  $\mathcal{M}$  is accessible, but not  $\mathcal{M}$  itself. = intervening on a set of variables (intervention set, IS) = causal mechanism SCM-MAB Properties — Dependence Structure Across Arms 1. *Equivalence* among Arms Two arms share the same reward distribution, i.e.,  $\mu_{\mathbf{X},\mathbf{Z}} = \mu_{\mathbf{X}}$ whenever intervening on some variables doesn't have a causal effect on the outcome.  $\rightarrow$  Test  $P(y|do(\mathbf{x}, \mathbf{z})) = P(y|do(\mathbf{x}))$  through  $Y \perp \mathbb{Z} \mid \mathbb{X}$  in  $\mathcal{G}_{\overline{\mathbf{x} \cup \mathbf{z}}}$  (do-calculus). — Minimal Intervention Set (MIS, Def. 1) Why do we need Causal MABs? A Motivating Example > A **minimal** set of variables among ISs sharing the same reward distribution. Given that there are sets with the same reward distribution, we would like to intervene on a *minimal* set of variables yielding smaller # of arms. 2. *Partial-orderedness* among Intervention Sets A set of variables **X** may be preferred to another set of variables **Z** whenever their maximum achievable expected rewards can be ordered:  $\mu_{\mathbf{X}^*} = \max_{\mathbf{X} \in D(\mathbf{X})} \mu_{\mathbf{X}} \geq \max_{\mathbf{Z} \in D(\mathbf{Z})} \mu_{\mathbf{Z}} = \mu_{\mathbf{Z}^*}$ A: Nine. We need to choose a set among — Possibly-Optimal Minimal Intervention Set (POMIS, Def. 2)  $\{\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}\}$  $\blacktriangleright$  Each MIS that can achieve an optimal expected reward in some SCM  $\mathcal{M}$ and then make the corresponding assignment (all-subsets). A naive confirming to the causal graph G is called a POMIS. combinatorial agent will intervene on  $\{X_1, X_2\}$ , simultaneously (= 4 arms). Clearly, pulling non-POMISs will incur regrets and delay the identification of the optimal arms. A: This strategy may *miss* the optimal arm, as shown in the simulation below: Toy Examples for MISs and POMISs \* a dashed bidirected edge = existence of an unobserved confounder) --- All Subsets — All-at-once Trials Trials

We propose **SCM-MAB**, marrying Multi-armed Bandit (**MAB**) with Structural Causal Model (**SCM**). Whenever the underlying causal mechanism for arms' rewards is well-understood, an agent can play a bandit *more effectively*, while a naive agent, ignorant to such a mechanism, may be *slow* or *failed* to converge. **Multi-armed bandit** (MAB) is one of the prototypical sequential decision-making settings found in various real-world applications. ► Arms: **Reward**: a reward  $Y_x$  is drawn from the arm's reward distribution, reward mechanism Formally, playing an arm  $A_x$  is setting X to x (called do), and observing Y drawn from P(Y|do(X = x)) where  $P(y|do(x)) := \sum_{u} \mathbf{1}_{f(x,u),y} P(u)$ .  $\triangleright$  Q: How many **arms** are there? (We can control 2 binary variables,  $X_1$  and  $X_2$ )

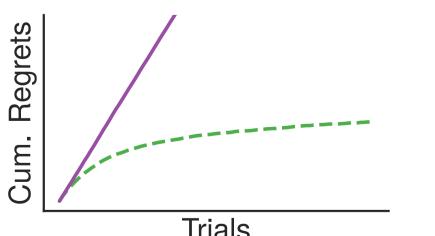
- ► Play:
- ► Goal:

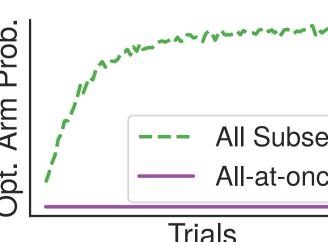
- pulling an arm





**Q**: Why is playing  $\{X_1, X_2\}$  (all-at-once) considered naive?





There exists a environment (i.e., parametrization) where intervening on  $X_2$  is optimal, and intervening on  $\{X_1, X_2\}$ , simultaneously is always sub-optimal. e.g.,  $X_1 = X_2 \oplus U$ ,  $Y = X_1 \oplus U$ . (when  $X_2 = 1$ ,  $X_1$  carries  $\neg U$ , and Y checks  $X_1 \neq U$ ) **Q**: What are the arms **worth** playing, regardless of the parametrization? A: Intervening on either  $\{X_2\}$  or  $\{X_1\}$  can be shown to be sufficient since:

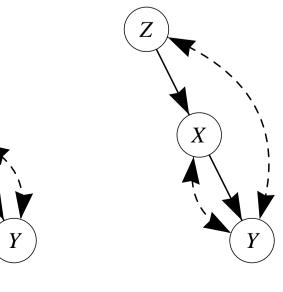
# **Structural Causal Bandits: Where to Intervene?**

Sanghack Lee and Elias Bareinboim Causal AI Lab, Purdue University

### SCM-MAB — Connecting Bandits With Structural Causal Models

Same MISs { $\emptyset$ , {X}, {Z}} since do(x) = do(x, z) for  $z \in D(Z)$ . **POMIS** are  $\{\{X\}\},\$ 

> ► We characterized a complete condition whether an IS is a (PO)MIS.  $\blacktriangleright$  We devised an algorithmic procedure to enumerate all (PO)MIS given  $\langle \mathcal{G}, Y \rangle$ .



 $\{\emptyset, \{X\}\}, \{\{Z\}, \{X\}\}, \{\emptyset, \{Z\}, \{X\}\}$ 

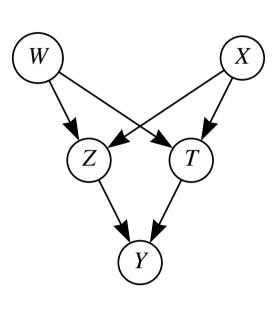
### **Empirical Evaluation**

4 strategies  $\times$  2 base MAB solvers  $\times$  3 tasks; (T = 10k, 300 simulations) Strategies

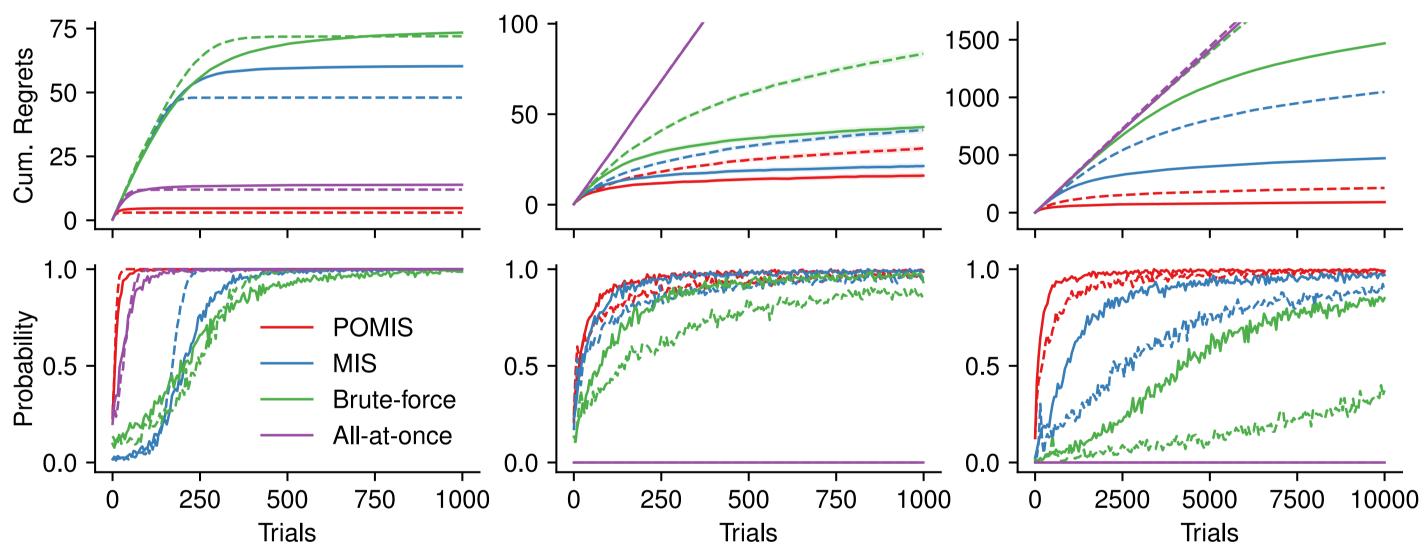
- Brute-force:
- ► All-at-once:
- ► MIS:
- ► POMIS:

all possible arms,  $\{\mathbf{x} \in D(\mathbf{X}) \mid \mathbf{X} \subseteq \mathbf{V} \setminus \{Y\}\}$  (aka all-subsets) intervene on all variables simultaneously,  $D(\mathbf{V} \setminus \{Y\})$ arms related to MISs arms related to POMISs

Thompson Sampling (TS) and kI-UCB



## TS in solid lines, kI-UCB in dashed lines

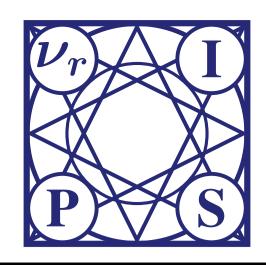


- $\blacktriangleright$  CRs: Brute-force  $\ge$  MIS  $\ge$  POMIS (smaller the better)
- that **All-at-once** is missing possibly-optimal arms.

### Conclusions

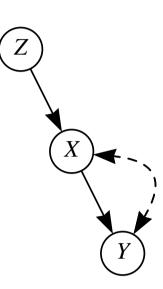
- ► Introduced **SCM-MAB** = MAB + SCM =  $\frac{MAB}{SCM}$ .
- SCM-MAB given a causal graph.
- optimal (POMIS).
- Empirical results corroborate theoretical findings.
- $\blacktriangleright$  We have a  $\star$ new $\star$  paper to be presented at **AAAI** 2019  $\Re$ !
- Characterized MISs / POMISs w/ the constraints.
- finite-sample properties.

Papers at causalai.net



### **Base MAB solvers**

**Tasks** 



Results

(top) averaged cumulative regrets and (bottom) optimal arm probability

► If the number of arms for All-at-once is *smaller* than **POMIS**, then, it implies

Characterized structural properties (equivalence, partial-orderedness) in Studied conditions under which intervening on a set of variables might be

Introduced non-manipulability constraints (not all variables are intervenable),

Introduced novel strategy to leverage structural relationships across arms with improved