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Abstract

Intelligent agents are continuously faced with the challenge of optimizing a policy
based on what they can observe (see) and which actions they can take (do) in the
environment where they are deployed. Most policy can be parametrized in terms
of these two dimensions, i.e., as a function of what can be seen and done given
a certain situation, which we call a mixed policy. In this paper, we investigate
several properties of the class of mixed policies and provide an efficient and
effective characterization, including optimality and non-redundancy. Specifically,
we introduce a graphical criterion to identify unnecessary contexts for a set of
actions, leading to a natural characterization of non-redundancy of mixed policies.
We then derive sufficient conditions under which one strategy can dominate the
other with respect to their maximum achievable expected rewards (optimality). This
characterization leads to a fundamental understanding of the space of mixed policies
and a possible refinement of the agent’s strategy so that it converges to the optimum
faster and more robustly. One surprising result of the causal characterization is that
the agent following a more standard approach—intervening on all intervenable
variables and observing all available contexts—may be hurting itself, and will
never achieve an optimal performance.
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1 Introduction

Agents are deployed in complex and uncertain environments where they are bombarded with high
volumes of information and are expected to operate efficiently, safely, and rationally. The discipline
of causal inference (CI) offers a compelling set of tools and a language that allows one to reason with
the structural invariances present in complex environments [1–5]. Whenever the causal mechanisms
of an underlying environment are sufficiently well-understood, the agent can design very precise
interventions, bringing a certain desired state of affairs about swiftly and cleanly (e.g., personalized
medical treatments, inequality-reducing tax policies). In the field of ML, bandits and reinforcement
learning (RL) constitute the de facto framework in which agents are designed such that a certain
policy is optimized and the corresponding goals can be efficiently achieved [6–8].

There is a growing literature exploring how these two frameworks (RL and CI) are related, and how
this understanding can be translated into more efficient decision-making in more challenging and
realistic settings. Recently, the more explicit connection between these frameworks has been made by
eliciting how causal knowledge—unobserved confounders and the causal relations between actions,
contexts, and rewards—can be used to improve decision-making in a variety of settings, including
for both interventional [9–11] and counterfactual [12, 13] reasoning (see also [14–17] and [18–21]).
Outside more traditional RL, causal inference researchers have embraced the idea of sequential
decision making in terms of conditional plans or dynamic treatment regimes, while focusing on, e.g.,
the identifiability of causal effects from observational data [22–27].
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Figure 1: (a) a causal graph, (b) abstract representation of a contextual bandit policy, and (c,d,e)
policy-induced graphs. Red circles for the intervened variables and, as a supplement, blue for their
non-action contexts and purple for induced edges (i.e., contexts cause an action). π nodes are
intervention indicators, which will be left implicit throughout the paper.

One of the main tasks in decision-making is to optimize the parameters associated with a specific
policy. The scope of each policy is usually fixed, in the sense that the set of actions and contexts
are pre-specified, a priori. By and large, the literature considers policies with scope that is (1)
observational, where the system is allowed to evolve without any intervention; (2) fully experimental,
where all the action variables are intervened on and all the context variables are observed. The
former tends to be more common in CI while the latter tends to be more common in RL. A causal
understanding of the world gives rise to a rich spectrum of policies with different scopes, allowing
agents to choose how to interact with the environment, meaning, which variables to intervene and
to observe (as a context). Against this background, we consider exploiting causal relationships for
systematic decision making in the context of, so called, mixed policies, which consists of a set of
decision rules where each rule corresponds to the way an action for an intervenable variable is
determined given its contexts.

For concreteness, consider an agent deployed in an environment represented as a causal graph G
(Fig. 1a), where C, X = {X1,X2}, Y represent the context, two action variables, and the reward
variable, respectively. Graphically, bidirected edges roughly represent unobserved confounders (UCs,
for short) affecting both ends of the arrow. The agent’s task is to maximize the reward µπ

.
= Eπ[Y ]

under a mixed policy (or simply, policy) π ∈ Π, where Π is a mixed policy space. A mixed policy is
associated with its scope, called mixed policy scope (MPS), which specifies the variables the policy
are intervening, and the variables taken into account for each intervened variables.

A standard contextual bandit (CB) optimizes a policy πCB (Fig. 1b), a (stochastic) mapping
from contexts to actions, which can be equally represented as a pair of decision rules πCB =
{π(x1|c),π(x2|x1, c)} (Fig. 1c). Traditionally, the policy is optimized within a restricted space
ΠCB, characterized by policies following a scope SCB = {〈X1, {C}〉, 〈X2, {X1,C}〉} that X1

is determined by C and X2 is decided based on C and X1. Unfortunately, the optimal policy
π∗CB

.
= argmaxπ∈ΠCB

µπ can be suboptimal, i.e., µ∗SCB

.
= µπ∗CB

< µ∗ where µ∗ is the optimal ex-
pected reward. To ground what this means, let every variable be binary and U1 and U2, the UCs
adjacent to X1 and X2, be fair coins and ε be a noise over X1 following P (ε = 1) = 0.2. Also, let
the unobserved causal mechanisms be specified as X1 ← U1 ⊕ ε, C ← U1, X2 ← U2 ⊕X1 ⊕ C,
and Y ← (1− (X2 ⊕ U2)) ∨ C, where ⊕ is the exclusive-or operator. Since the policy determines
X2 irrelevant to U2 and the context C is also independent to U2, we can elicit that µ∗SCB

= 0.75. In
this setting, the best policy is intervening only on X1 given C, i.e., {π(x1|c)} as depicted in Fig. 1d.
With X1 = C, the policy suppresses the noise ε over X1 and makes X2 = U2 so that its optimal
expected reward in this environment is 1.0.

SCB =
{〈X1, {C}〉,
〈X2, {C, X1}〉}

Se =
{〈X2, {C}〉}

Sd =
{〈X1, {C}〉}

Sa =
∅

⊃, =

⊂

⊃,≥

⊃ ⊃

Figure 2: Relationships be-
tween the MPSes

In the example of Fig. 1a, if {X1,X2} are intervenable and {C,X1}
can become a context, there are 15 mixed policy scopes. These dif-
ferent modes of interaction can be represented as induced graphs
and can be classified based on two desiderata: non-redundancy
and optimality. We explain these desiderata through an illustration
(Fig. 2) of the four MPSes Sa = {}, SCB, Sd = {〈X1, {C}〉}, and
Se = {〈X2, {C}〉}. We annotate their relationships with a superset
symbol ⊃, whether one scope has more actions or contexts than the
other, and with a comparison symbol ≥µ (or =µ), whether one’s
optimal reward is at least as good as (or equal to) the other’s in
every world compatible with a causal graph. The equality forms an
equivalence class among scopes with respect to optimal rewards.
Roughly speaking (to be formalized later on), non-redundancy refers to the condition of a scope
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such that removing any of its actions or contexts can negatively affect its maximum performance.
In other words, given two scopes S and S ′, if S ) S ′ and S =µ S ′, then S is said to be redundant.
For instance, since Sc ⊃ Se while Sc =µ Se, the CB policy (Fig. 1c) is redundant and the CB agent
wastes its resources not only for intervening on X1 (a redundant action) but also for taking X1 into
account for X2 (a redundant context). Furthermore, optimality of a scope S represents that there
exists no other scope S ′ (not in the equivalence class of S) such that S ′ ≥µ S. For example, Sd,
when optimized, is at least as good as Sa (i.e., µ∗Sd ≥ µ

∗
Sa ) in every environment, and can outperform

it in some environments (i.e., µ∗Sd > µ∗Sa ), which demonstrates that Sa does not meet the optimality
criterion. Not every pair of scopes can be comparable: Se is not comparable to Sa nor Sd. After a
careful examination, we can indeed able to show that MPSes Sc, Sd, Se meet the optimality criterion.
Both non-redundancy and optimality are satisfied only by Sd and Se among all 15 scopes. This
example demonstrates that an intelligent agent should judiciously intervene on a carefully chosen
subset of variables with side information (context) relevant to attaining an optimal reward. More
detailed account is given in Appendix A.

Contributions In this work, we investigate mixed policies with respect to their expected rewards.
Our contributions are as follows. (i) We developed a graphical criterion that detects the redundancy
of contexts relative to a collection of actions taking advantage of properties pertain to optimal mixed
policies. (ii) We established sufficient conditions under which one policy scope can outperform
another, characterizing the partial order defined over the space of scopes with respect to their
maximum expected rewards achievable. We believe these results have practical implications for the
design of intelligent agents providing the basis for efficient and effective explorations of the policy
space. One fundamental implication of our analysis is that the agent following a standard approach
(i.e., intervening and observing whenever possible) may be hurting itself, and, regardless of the
number of interactions, will never be able to achieve an optimal performance.

Preliminaries Let us denote a variable by an uppercase letter X , whose value is denoted by its
corresponding lowercase letter x. A set of variables will be denoted by a bold uppercase letter X
with its value x. We follow notational conventions from literature on measure theory, algebra of
sets, and causal inference. We may use ∪̇, instead of ∪, to emphasize the union of two disjoint
sets. We use structural causal models (SCMs) [1, Ch. 7] as the semantical framework to represent
an underlying environment. An SCM M is a quadruple 〈U,V,P (U),F〉, where U is a set of
exogenous variables determined by factors outside the model following a joint distribution P (U),
and V is a set of endogenous variables whose values are determined following a collection of
functions F

.
= {fi}Vi∈V such that Vi ← fi(pai,ui) where PAi ⊆ V\{Vi} and Ui ⊆ U. The

observational distribution P (v) is defined as
∑

u

∏
Vi∈V P (vi|pai,ui)P (u). Further, do(X = x)

represents the operation of fixing a set X to a constant x regardless of their original mechanisms.
Such intervention induces a submodelMx, which isM with fX replaced to x for X ∈ X. Then,
an interventional distribution Px(v\x) (or also P (v\x|do(x))) follows fromMx, and is such that
Px(v\x) =

∑
u

∏
Vi∈V\X P (vi|pai,ui)P (u).

Graphically, each SCM (model, for short) is associated with a causal diagram G = 〈V,E〉, where
each type of edge represents a different relationship among variables: (i) X→Y if X is an argument
of fY (a direct causal relationship); and (ii) X↔Y if for a maximal subset W ⊆ V\{X} such
that UW ⊥⊥ UX and UY 6⊆ UW; From the agent’s perspective, only the causal graph G of the
environment M is available, while its reward is validated through M. We operate in the non-
parametric setting, where no assumption about the form or shape of the pair 〈P (U),F〉 is made, but
for the structural knowledge encoded in G. Whenever not even G is known, the agent can perform
active interventions to learn it; for example, see [28, 29]. We denote by GXZ an edge subgraph of
G which removes edges incoming to X and outgoing from Z. A submodelMx can be presented
as GX with X fixed to x. Hence, causal relationships among other variables are captured in G\X,
which is the subgraph of G over V\X. We denote by G〈V′〉 the latent projection of G onto V′, the
causal graph retaining causal relationships among V′ [30]. We adopt familial notation, ch, pa, an,
de for children, parents, ancestors, and descendants, respectively, with Ch, Pa, An, De including
arguments. Our work utilizes d-separation [31, 32] and do-calculus [33], classic graphical rules to
ascertain equalities between distributions (for further details, see Appendix B). Also, the omitted
proofs and derivations are provided in Appendix.
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2 Mixed Policies: Fundamentals & Basic Results

As discussed in the previous section, a causal understanding of the underlying world helps recognize
a broad spectrum of policies with diverse scopes so as for agents to select the mode of interaction.
We now formally define the space of mixed policies with the notion of mixed policy scope.
Definition 1 (Mixed Policy Scope (MPS)). Let G be a causal graph, Y be a specific reward variable,
X? ⊆ V\{Y } a set of intervenable variables, and C? ⊆ V\{Y } a set of contextualizable variables.
A mixed policy scope S is defined as a collection of pairs 〈X,CX〉 such that (i) X ∈ X?, CX ⊆
C?\{X}, and (ii) GS is acyclic, where GS is defined as G with edges onto X removed and directed
edges from CX to X added for every 〈X,CX〉 ∈ S.

For concreteness, given a causal graph G (Fig. 1a), the observational case is an MPS {}. An MPS
SCB = {〈X1, {C}〉, 〈X2, {X1,C}〉} induces a graph (Fig. 1c) while {〈X2, {C}〉} induces a graph
in Fig. 1e. An MPS represents a class of mixed policies that share the same graphical characteristics
manifested by GS , an induced graph forMπ .
Definition 2 (Mixed Policy). Given 〈G,Y ,X?,C?〉 and an SCMM ∼ G with XY ⊆ R, a mixed
policy π is a realization of a mixed policy scope S compatible with the tuple π .

= {πX|CX
}〈X,CX〉∈S ,

where πX|CX
: XX × XCX

7→ [0, 1] is a proper probability mapping.

If we consider the MPS SCB discussed above, its mixed policy π is {πX1|{C},πX2|{C,X1}}, which is
a specific instantiation of the parameters with respect to the corresponding scope. For readability, we
may write {π(x1|c),π(x2|x1, c)}. Given an underlying SCMM, a mixed policy π induces a variant
of SCMMπ where the function for X ∈ X(π) is replaced by the corresponding πX|CX

(see [34]
for a detailed account). We denote by Pπ the joint distribution over the variables from the system
under the policy π. Throughout the paper, G, Y , C?, and X? are oftentimes implicit including an
underlying SCMM∼ G and, thus, Π, as well.

Expected Reward We define the expected reward of a mixed policy. To begin with, we define
intervened variables X(S) .

= {X | 〈X,CX〉 ∈ S} and active contexts C(S) .
=
⋃
X∈X(S) CX .

Similarly, given π ∼ S (a mixed policy following the MPS), X(π)
.
= X(S) and C(π)

.
= C(S). Let

C− = C(π)\X(π) be the non-action contexts. Then, the expected reward for π can be expressed
as, with x simply denoting the value of X(S),

µπ =
∑
y,x,c−

yPx(y, c
−)

∏
X∈X(π)

π(x|cx). (1)

The expression separates the atomic interventional probability (first factor), which is inherent to
the underlying world and not affected by the policy π, from the likelihood of a specific interven-
tion given contexts (second factor), which is optimizable and defined by π. The expected reward
can also be written focusing only on a subset of intervened variables. Given X′ ⊆ X(π), let
C′ =

⋃
X∈X′ CX\X′, and Q′ = Pπ\X′ where π\X′ represents π with decision rules over X′ re-

moved. Then, µπ =
∑
y,x′,c′ yQ

′
x′(y, c

′)
∏
X∈X′ π(x|cx). This expression, which hides the details

of uninteresting actions and contexts, is the building block to characterize mixed policies.

Optimality and deterministic mixed policy A mixed policy π is said to be optimal in the given
environment if and only if µπ = µ∗

.
= maxπ′∈Π µπ′ . Restricting our attention to ΠS

.
= {π ∈ Π |

π ∼ S}, we define µ∗S
.
= maxπ′∈ΠS µπ′ , an optimal policy π with respect to S. We call a mixed

policy deterministic if, for every πX|CX
∈ π, X is determined by a function of CX .

Proposition 1. Given a mixed policy scope, there always exists a deterministic mixed policy, which
is optimal with respect to the given scope.

Not surprisingly at this point, a stochastic policy is no better than the best deterministic policy [35–37].
Still, this result has a particular importance to the treatment provided here due to its implications to
the d-separation criterion [38], which will be instrumental and discussed in depth in Sec. 3.1. Another
key implication is shown next.
Proposition 2 (Separation of Actions and Contexts). Given an MPS S, there always exists a deter-
ministic mixed policy π ∈ Π such that X(π) and C(π) are disjoint and µπ = µ∗S .
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Figure 3: Given a causal graph (a), three induced
graphs (b,c,d) for different mixed policies where
(d) the separation is demonstrated.

A deterministic policy gives rise to the auton-
omy of each action allowing them to be deter-
mined only by non-action contexts. For concrete-
ness, consider the example shown in Fig. 3a. A
mixed policy (Fig. 3b) includesX2 listening toX1,
which enables systematic coordination between
X1 and X2. The proposition implies that X2 can
rather listen to C (which is the context of X1) di-
rectly (Fig. 3d). Further, in Fig. 3c, X2 utilizes
both X1 and C. However, it is sufficient to make
use of only C. By noting that the policy relative
to Fig. 3d can achieve optimality, while relying on lesser information than the one relative to Fig. 3c,
we investigate how to capture non-redundancy within MPSes.

3 Non-Redundant Mixed Policy

Optimizing a mixed policy involves assessments of the effectiveness of its scope so that an agent can
avoid intervening or observing on unnecessary actions or contexts. Here, we define and characterize
non-redundancy of MPS. We say S subsumes S ′, denoted by S ′ ⊆ S, if X(S ′) ⊆ X(S) and
C′X ⊆ CX , for every 〈X,C′X〉 ∈ S ′. Further, we denote by π′ ⊆ π, where π′ ∼ S ′ and π ∼ S if
π′(x|c′x) =

∑
c′′x
π(x|cx)Pπ(c

′′
x|c′x), for every X ∈ X(S ′) where C′′X = CX\C′X .

Definition 3. Given 〈G,Y ,X?,C?〉, an MPS S is said to be non-redundant if there exists an SCM
M∼ G and π ∼ (S,M) such that µπ 6= µπ′ for every π′ ( π.

The constraint on π′ ensures that the definition of non-redundancy of MPS is focused on the
differences in actions or contexts while the behavior (i.e., π(·|·)) remains the same—π′(x|c′x) =
Q(x|c′x) if C′X 6= CX and Q(x|cx) = π′(x|cx) = π(x|cx), otherwise. Hence, the constraint
provides a basis to characterize non-redundancy of MPS utilizing well-established graphical criteria.

Theorem 1. Let S = {〈X,CX〉}X∈X be an MPS and letH = GS . S is non-redundant if and only
if (i) X ⊆ an(Y )H and (ii) (C 6⊥⊥ Y | CX\{C}) inH\{X}, for every X ∈ X and C ∈ CX .

Y

X1

C2
C1

X2

C3

Figure 4: A non-
redundant MPS

The condition (i) can be seen through rule 3 of do-calculus such that the change
of the mechanism of X has a consequence on the reward Y .1 The condition (ii)
coincides with rule 2 of do-calculus Q(y|x, cx\{c}) = Qx(y|cx\{c}), where
Q = Pπ . In words, the path from C to Y can be concatenated with X←C to
form a back-door path from X to Y .2 Consider the example in Fig. 4 where
both X1 and X2 are ancestors of Y (condition (i)). Regarding condition (ii),
C1 being adjacent to Y , C2 having a path to Y through X2, and C3 being
connected to Y as C3→C2→X1→Y demonstrate that every context is non-
redundant. We provide an efficient algorithm for obtaining a unique, maximal,
non-redundant MPS (nr-mps, Alg. 2) of a given MPS in Appendix E.

3.1 Non-Redundancy under Optimality

Non-redundancy of MPS (Def. 3) based on a stringent constraint imposed on π′ is insufficient
to understand, e.g., whether a context of an action would be still relevant even when π ∼ S is
fully-optimized. Hence, we characterize the non-redundancy of MPS under optimality, which has
practical implications to an agent adapting its suboptimal policy. Recall Fig. 3c where X2 listens to
X1 as context. We showed that the dependence is vanished under the optimality (Fig. 3d). That is, the
agent would better avoid learning π(x2|c,x1) at the beginning, but optimize π(x2|c) instead.

Definition 4 (Non-Redundacy under Optimality (NRO)). Given 〈G,Y ,X?,C?〉, an MPS S is said to
be non-redundant under optimality if there exists an SCMM compatible with G such that µ∗S > µ∗S′
for every strictly subsumed MPS S ′ ( S , i.e., ∃M∼G∀S′(S(µ∗S > µ∗S′).

1This condition was leveraged in the atomic interventions case to establish minimality [16, 17]; see also [39].
2The relevance of contextual information has been discussed in the influence diagrams literature [40, 20].

More recently, this condition was used in the case of singleton decisions (i.e., |X(S)| = 1), see [41, 42].
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(e) represents a maximal, non-redundant MPS under an optimal condition for Fig. 4.

We will investigate a criterion more general than Thm. 1—whether, for a set of actions X′ ⊆ X?, a set
of contexts C′ ( CX′\X′ are relevant while taking account of deterministic relationships (Prop. 1).
One approach is to characterize an opposite condition, i.e., µ∗S = µ∗S′ for S ′ ( S, as follows.
Proposition 3. Given an MPS S, let X′ ⊆ X(S) and C′ ( CX′\X′ be actions and non-action
contexts of interest, respectively, and let Q′ = Pπ\X′ . Given a mixed policy π ∼ S optimal with
respect to S, if there exist decision rules {π′(x|(x′ ∪̇ c′) ∩ cx)}X∈X′ such that

µ∗S =
∑
y,c′,x′

yQ′x′(y, c
′)
∏
X∈X′

π′(x|(x′ ∪̇ c′) ∩ cx), (2)

then, CX′\(C′ ∪̇ X′) are jointly redundant to X′ under optimality, and S ′ .= (S\X′) ∪ {〈X,C′ ∩
CX〉}X∈X′ satisfies µ∗S = µ∗S′ .

Proof. This follows from the definition of non-redundancy under optimality and expected reward.

To closely investigate a sufficient condition for Prop. 3, we start by discussing the implication of
deterministic relationships, which characterizes an optimal policy, on the d-separation criterion. The
graphical criterion handles deterministic mechanisms (i.e., conditional intervention) by excluding
them appearing as common causes, e.g.,←X→, in a trail [38]. This corresponds to adding those
implied variables to the conditionals, in which we explicitly represent with an operation d·e for clarity.
Given conditionals Z, the implied variables with respect to Z is computed as follows. Initially setting
dZe ← Z, we update dZe ← dZe ∪ {X ∈ X(S) | CX ⊆ dZe} until it is converged. Then, given
π ∼ S, an optimal policy with respect to S, a conditional independence statement W ⊥⊥ T | Z for
Pπ becomes W ⊥⊥ T | dZe in Gπ. Consider C ∈ CX for some X ∈ X(π). The redundancy of a
single context can now be expressed as (C ⊥⊥ Y | dCX\{C}e)H\{X}. For instance, in Fig. 5a, C2 as
a context of X2 is independent to Y given C1 in a graph with X2 removed since d{C1}e = {C1,X1}
and C2←X1→Y is not a valid trail anymore. Hence, C2 is removable from CX2

.

Next, we illustrate contexts that unnecessarily induce correlations among actions without any impli-
cations on Y (see Appendix E.1 [43] for the derivations of the examples in Fig. 5). In Fig. 5b,
both X1 and X2 utilize C3 as their contexts. where µπ = Ec3 [Eπ[y|c3]]. Since there exists
c∗3 = argmaxc3∈XC3

Eπ[y|c3], we can derive that µπ ≤ Eπ[y|c∗3]. Given that c∗3 is merely a
constant, new decision rules π′(xi|c1)

.
= Q(xi|c1, c∗3) = π(xi|c1, c∗3) for i ∈ {1, 2} yield the same

optimal reward. A more sophisticated example is shown in Fig. 5c where a redundant context can be
fixed conditioned on the remaining contexts. The expected reward is expressed as

µπ =
∑
c1,c2

Q(c2|c1)
(∑

y,x yPx(y, c1)π(x1|c1, c2)π(x2|c1, c2)
)
=
∑
c1,c2

Q(c2|c1)µπ(c1, c2).

Let c∗2 be a function taking c1 such that c∗2(c1) = argmaxc2 µπ(c1, c2) for c1 ∈ XC1 . Then,

≤
∑
c1
µπ(c1, c

∗
2(c1)) =

∑
y,c1,x

yPx(y, c1)π(x1|c1, c∗2(c1))π(x2|c1, c∗2(c1)).

By incorporating c∗2 into π, we can introduce π′ such that π(x1|c1, c∗2(c1))π(x2|c1, c∗2(c1)) =
π′(x1|c1)π′(x2|c1), satisfying Prop. 3. The variables being fixed are not necessarily conditioned on
its parents (or ancestors). An example conditioning on its child is illustrated in (Fig. 5d) where we
can elicit, e.g., π(x1|x∗3(c2), c2)

.
= π′(x1|c2).

Given a general causal graph and an MPS, the aforementioned phenomena can be arbitrarily complex.
We present a general criterion to test such redundancies by first proposing a lemma to obtain an
intermediate expression. Let V≺V denote a subset of V preceding V ∈ V given an order ≺ over V.
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Lemma 1. Given an MPS S, which satisfies non-redundancy (Thm. 1), let X′ ⊆ X(S), actions of
interest, C′ ( CX′\X′. non-action contexts of interest. If there exists a subset of exogenous variables
U′ in GS , a subset of endogenous variables Z in GS that disjoints with C′ ∪̇ X′ and subsumes
CX′\(C′ ∪̇ X′), and an order ≺ over V′

.
= C′ ∪̇ X′ ∪̇ Z such that

1. (Y ⊥⊥ πX′ | dX′ ∪̇ C′e)GS ,
2. (C ⊥⊥ πX′≺C

,Z≺C ,U′ | d(X′ ∪̇ C′)≺Ce)GS for every C ∈ C′, and
3. V′≺X is disjoint with de(X)GS and subsumes pa(X)GS for every X ∈ X′,

then, the expected reward for π, a deterministic policy optimal with respect to S, can be written as

µπ =
∑
y,c′,x′

yQ′x′(y, c
′)
∑
u′,z

Q(u′)
∏
Z∈Z

Q(z|v′≺z,u′)
∏
X∈X′

π(x|cx). (3)

Lemma 1 offers a sufficient condition for obtaining the intermediate expression (Eq. (3)) for us to
rewrite µπ as proposed in Prop. 3. The order ≺ dictates how the chain rule is applied in deriving
the expression and what variables will appear as conditional for the probability terms. The first two
conditions are relevant to separate Q′x′(y, c

′) from the rest. The third one is to obtain π(x|cx) from
Q(x|v′≺x,u′). We revisit Fig. 4 where we will ultimately show that, indeed C2 and C3 are redundant
contexts under optimality. Given C′ = {C1} and X′ = {X1,X2}, consider Z = {C2,C3}, U′ = ∅,
and order ≺= 〈C3,C1,X2,C2,X1〉. We can derive the following expression for the expected reward
(with subscripts concatenated),

µ∗S =
∑
y,x,c1

yQ′x(y|c1)
∑
c23

Q(c123,x) (4)

=
∑
y,x,c1

yQ′x(y|c1)
∑
c23

Q(c3)Q(c1|c3)Q(x2|c13)Q(c2|c13,x2)Q(x1|c123,x2) (5)

=
∑
c3
Q(c3)

∑
y,x,c1

yQ′x(y, c1)
∑
c2
Q(c2|c13,x2)π(x2|c3)π(x1|c12). (6)

We now provide a sufficient condition that further polishes the intermediate expression from Lemma 1
so as to represent it as the expected reward for a smaller MPS than the original one, fulfilling the
condition presented in Prop. 3.
Theorem 2. Let U′, Z, and≺ satisfy Lemma 1. For Z ∈ Z, let VZ be a minimal subset of V′≺Z ∪U′

such that Q(Z | VZ) = Q(Z | V′≺Z ,U′). We define fix(T) with respect to {〈Z,VZ〉}Z∈Z, that is,
with T̂

.
= dTe ∪ {Z ∈ Z | VZ\U′ ⊆ dTe}, fixed(T) is T if T = T̂ and fixed(T̂), otherwise. If

fixed(CX\Z) ⊇ CX for X ∈ X′, then, S ′ .= (S\X′) ∪ {〈X,CX\Z〉}X∈X′ satisfies µ∗S′ = µ∗S .

Thm. 2 provides a condition where Eq. (3) can be transformed to µ∗S′ . To do so, it examines whether
terms Q(z|vz) can be removed by fixing Z to z∗ conditional on vz in connection with the context to
be removed. That is,

µ∗S =

marginally fixable︷ ︸︸ ︷∑
u′

Q(u′)
∑
y,c′,x′

y Q′x′(y, c
′)︸ ︷︷ ︸

irrelevant to Z

to fix conditionally︷ ︸︸ ︷∑
z

∏
Z∈Z

Q(z|vz)︸ ︷︷ ︸
defines dependency

∏
X∈X′

π(x|
given︷︸︸︷
cx\z,

to infer︷ ︸︸ ︷
cx ∩ z)︸ ︷︷ ︸

to be π′(x|cx\z)

, (7)

We explain the theorem by deriving further from Eq. (6). C3 can be fixed to a constant c∗3 so that,
≤
∑
y,x,c1

yQ′x(y, c1)
∑
c2
Q(c2|c1, c∗3,x2)π(x2|c∗3)π(x1|c1, c2). (8)

There exists x∗2 ∈ XX2
where we can replace π(x2|c∗3) with π′(x2) such that π′(x∗2) = 1.

≤
∑
y,x,c1

yQ′x(y, c1)
∑
c2
Q(c2|c1, c∗3,x∗2)π′(x2)π(x1|c1, c2). (9)

These steps first correspond to checking fixed(∅) = {C3,X2} and, then, safely replacing the decision
rule for X2 by eliminating C3 from its context since fixed(CX2

\Z) ⊇ CX2
= {C3}. Next, the opti-

mal c2 is determined with respect to c1, i.e., Q(c2|c1, c∗3,x∗2), where we can replace π(x1|c1, c∗2(c1))
by π′(x1|c1),

=
∑
c1,c2

Q(c2|c1, c∗3,x∗2)
∑
y,x yQ

′
x(y, c1)π

′(x2)π(x1|c1, c2) (10)

≤
∑
y,x,c1

yQ′x(y, c1)π
′(x2)π(x1|c1, c∗2(c1)) (11)

=
∑
y,x,c1

yQ′x(y, c1)π
′(x1|c1)π′(x2) = µ∗S′ . (12)

These steps correspond to checking fixed(CX1\Z) = fixed({C1}) = {C1,C3,X2,C2} ⊇ {C1,C2}
for X1. Since µ∗S′ ≤ µ∗S by the existence of π ∈ S that can emulate π′ ∈ S ′, and µ∗S′ ≥ µ∗S
by the derivation (Eq. (12)), we can conclude that µ∗S′ = µ∗S . As a consequence, MPS S is not
non-redundant under optimality due to the ineffective contexts {C2,C3} with respect to {X1,X2}.
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Figure 6: A causal graph G (a) and its induced graphs (a,b,c,d) where the mixed policy scope on the
right is better than or equal to the one on the left with respect to their optimal rewards.

4 A Partial Order over Mixed Policies and Possible-Optimality

Equipped with the notion of non-redundancy under optimality (NRO, Def. 4), an agent can more
efficiently optimize its policy than relying on generic non-redundancy (Def. 3). Yet, an important
question is whether an MPS is worth to explore for an agent to converge to an optimal policy. Consider
for an instance, see Figs. 6a to 6d which represent various NRO MPSes. However, even without
interacting with an environment, we can claim µ ≤ µ∗S′ ≤ µ∗S′′ ≤ µ∗S′′′ , that is, the next MPS
is better than or equal to (simply better or improved hereinafter) the one regarding their optimal
expected rewards in any model: First, µ ≤ µ∗S′ since there exists an optimal X1 value, x∗1; Next,
µ∗S′ ≤ µ∗S′′ , there exists an optimal X2 value, and can be determined without conditional on X1,
which is implied; Finally, µ∗S′′ ≤ µ∗S′′′ since X1 can better behave by taking an effective context C
into account. Therefore, the agent can only optimize parameters involving S ′′′ (Fig. 6d) to obain
an effective policy. Against this background, we characterize such a partial order over the space of
MPSes with respect to their maximum expected rewards achievable: when one MPS is better than the
other. To begin a formal discussion, we introduce possible-optimality of MPS.
Definition 5 (Possibly-Optimal MPS). Given 〈G,X?,C?,Y 〉, let S be a set of NRO MPSes. An
MPS S ∈ S is said to be possibly-optimal if there existsM∼ G such that µ∗S > maxS′∈S\{S} µ∗S′ .

In the partial order sense, POMPSes are the maximal elements among NRO MPSes. To study the
partial order, we present two operations which take an MPS and return an improved MPS: (i) adding
observations for existing actions and (ii) adding new interventions. These two operations offer
sufficient conditions for identifying non-POMPSes.
Proposition 4. Given an MPS S and X ∈ X(S), adding C ∈ C?\{X} as a context of X , resulting
S ′ = (S\{X}) ∪ {〈X,CX ∪ {C}〉} improves S if C 6∈ de(X)GS and C ⊥⊥ Y | dCXe inH\{X}.

This proposition is straightforward. Note however that the resulting MPS may not be NRO as an
added observation can cancel out the relevance of the existing contexts, e.g., Prop. 2 can be viewed as
adding observations and removing now irrelevant observations. Further, any set of observations that
can be added to a set of actions to improve an MPS can also simply be added sequentially.

Adding new interventions Intervention replaces the natural mechanism for X ∈ X? with an
artificial one π(x|z). To guarantee that the alternative one can perform at least as good as the natural
one, we should understand what information X originally takes and whether the new contexts Z
carry information tantamount to the original one. If every parent of X ∈ X? is contextualizable
(e.g., no UC), the problem becomes trivial (e.g., Markovian). Otherwise, we examine the existence
of a back-door path.3 Let Q = Pπ and H = Gπ for some S ∼−1 π. Given X ∈ X?\X(π) and
Z ⊆ C?\{X}, if (i) (Y ⊥⊥ X | dZe)HX and (ii) X 6∈ an(Z)H, then

µπ =
∑
y,x,z yQ(y|x, z)Q(x|z)Q(z)

(i)
=
∑
y,x,z yQ

′
x(y|z)Q(x|z)Q(z)

(ii)
=
∑
y,x,z yQ

′
x(y|z)Q(x|z)Q′x(z)

.
=
∑
y,x,z yQ

′
x(y, z)π

′(x|z) .
= µπ′ ,

for some π′. Since π′ can be optimized, µ∗S ≤ µ∗S∪{〈X,Z〉}. However, naively generalizing the
criterion to handle a set of interventions is insufficient. Consider Fig. 7a, an observational policy
where X = X? and C = C?. Based on the aforementioned criteria,X1 andX2 shall not be intervened
simultaneously (by replacingX to X):C2 cannot be used as Z sinceX1 ∈ an(C2)G ;X2 ↔ C2 → Y
is an open back-door path. We propose a solution for adding interventions simultaneously, powered
by Thm. 2.

3[16, 17] studied ‘possibly-optimal’ atomic interventions (C? = ∅) where their conclusions can be essentially
reduced to finding actions with no back-door path to Y while varying the strengths of UCs.
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Figure 7: (a) a given MPS to construct (c) an improved MPS through (b) an intermediate, invalid
MPS. (d,e) demonstrate the use of post-reward interventions to improve a given MPS.

Theorem 3. Given an MPS S, let S ′ 6= S be an MPS with X(S) ⊆ X(S ′) such that H′′ the
union of induced graphs GS ∪ GS′ is acyclic. Let X′ be actions that the MPSes disagree on, i.e.,
(X(S ′)\X(S))∪{X ∈ X(S) | C′X 6= CX}, and (invalid) MPS S ′′ .= {〈X, pa(X)H′′∪UX〉}X∈X′ .
µ∗S′′ = µ∗S′ can be elicited by Thm. 2, then, µ∗S ≤ µ∗S′ .

Given an MPS S, an intermediate MPS is constructed adding new contexts to a subset of X? while
assuming that any non-contextualizable variables can be used as contexts. Consider comparing S = ∅
(Fig. 7a) and S ′ (Fig. 7b) where we employ an intermediate representation S ′′ (Fig. 7c) to ultimately
inspect µ∗S ≤ µ∗S′ . Thm. 2 is applicable with U′ = ∅ and ≺= 〈C1,UX1

,UX2
,X1,C2,X2〉 to

demonstrate µ∗S′′ = µ∗S′ . Since µ∗S ≤ µ∗S′′ , we can elicit µ∗S ≤ µ∗S′ , confirming that S is not a
POMPS. By allowing X′ to intersect with X(S), the theorem not only adds new inventions but also
can replace the contexts of existing interventions.

Refining the space of MPSes Equipped with the characterizations, we can refine the space of
MPSes, hence, the space of mixed policies, by filtering out MPSes that are either redundant or
dominated by other MPS, eliciting a superset of POMPSes in a given setting. This can be achieved
in a brute-force manner by enumerating all MPSes, and examining whether any of Thm. 2, Thm. 3,
and Prop. 4 is applicable. One of barriers to design a more principled approach (e.g., dynamic
programming [16]) to obtaining POMPSes (or a superset of) is that contexts are interleaved in both
terms in Eq. (1) representing a reward mechanism and a policy.

Nevertheless, we investigate simplifying a mixed policy setting while preserving its POMPSes.
First, one may think that the descendants of Y can be ignored since neither intervening action
variables among them changes the reward nor observing contextualizable variables among them is
feasible. Surprisingly, Fig. 7d, where X1 and C take place after the reward is evaluated, remarkably
demonstrates the opposite. With X1 intervened on, C can become a context for X2 (Fig. 7e) without
inducing a cycle. This implies that contexts in the descendants of the reward becomes usable if
interventions can break the ancestral relationships. Second, X ∈ X? that cannot affect C? or
Y is not intervene-worthy — if de(X)G ∩ (C? ∪ {Y }) = ∅, there exists no MPS that makes
X ∈ an(C? ∪ {Y })G , and, thus, X can be excluded from X?.

Proposition 5. Given 〈G,Y ,X?,C?〉, let X′
.
= {X ∈ X? | de(X)G ∩ (C? ∪ {Y }) 6= ∅}, X′′

.
=

de(Y )GX′ ∩X′, and Z
.
= de(Y )G

X′′
. The POMPSes for 〈G,Y ,X?,C?〉 are the same as those for

〈G\Z,Y ,X′,C?\Z\X′′〉.

5 Conclusions

In this paper, we studied the space of mixed policies that emerges through the empowerment of an
agent to determine the mode it will interact with the environment — i.e., which variables to intervene
on and which contexts it decides to look into. Facing new challenges to optimize this new mode
of interaction, which has many additional degrees of freedom, we studied the topological structure
induced by the different mixed policies, which could in turn be leveraged to determine partial orders
across the policy space w.r.t. the maximum expected rewards achievable. As a practical result, we
provided a general characterization of the space of mixed policies with respect to properties that allow
the agent to detect inefficient and suboptimal strategies. One of the surprising implications of this
characterization provided here is that agents following a more standard approach (i.e., intervening on
all intervenable variables and observing all available contexts) may be hurting themselves, and may
never be able to achieve an optimal performance regardless of the number of interactions performed.
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A Discussion – Introductory Example

X1

X2

C

Y

Figure 8: Introduction’s causal
graph (originally, Fig. 1a).

We provide further elaboration on the example discussed in the
introduction (Fig. 1a), which is shown again for convenience in
Fig. 8. We recall that X1 and X2 are intervenable and X1 and
C are observable variables (i.e., can be used as context), so we
write X? = {X1,X2} and C? = {C,X1}, following the corre-
sponding notation. There are 15 distinct ways (i.e., mixed policy
scopes) for an agent to interact with the system, which is explic-
itly shown in Fig. 9. This plot is known as a Hasse diagram (i.e., a
diagram with transitive reductions) and represents the relationship
between the different policies based on two dimensions:

(a) whether one policy scope can behave always better than or equal to another with respect to
maximum achievable expected rewards, which induces a dominance relationship (Fig. 9a);

(b) whether one policy scope has more actions or contexts than another, which is called a
subsumption relationship (Fig. 9b).

Regarding the dominance relation, a blue directed edge Sα → Sβ corresponds to µ∗Sα ≤ µ∗Sβ and
a gray dotted undirected edge Sα − Sβ represents the equivalence in their maximum achievable
expected rewards, (i.e., µ∗α = µ∗β); we usually call the nodes connected through these edges an
equivalence class, given their indistinguishability in terms of achievable rewards.

Regarding the subsumption relation, a red directed edge Sα → Sβ represents a subsumption relation-
ship meaning that Sβ has more actions or contexts than Sα, so is able to mimic it. The goal is usually
to find policies that achieve higher rewards (relative to dimension (a)) and are more parsimonious,
or simpler (relative to dimension (b)). For grounding the discussion, we start with dimension (a)
and consider µ, the expected reward for the observational policy, and µ∗{〈X1,{C}〉}, the maximum
expected reward with the policy intervening on X1 given C. We will show below µ ≤ µ∗π(x1|c) by
using do-calculus,

µ =
∑

y
yP (y) by definition (13)

=
∑

y,x1,c
yP (y,x1, c) marginal probability (14)

=
∑

y,x1,c
yP (y|x1, c)P (x1|c)P (c) chain rule (15)

=
∑

y,x1,c
yPx1

(y|c)P (x1|c)Px1
(c) Rule 2 of do-calculus (16)

=
∑

y,x1,c
yPx1(y, c)P (x1|c) chain rule (17)

=
∑

y,x1,c
yPx1

(y, c)π(x1|c) by definition (18)

≤ µ∗{〈X1,{C}〉},

where the last equality comes from the expression for the expected reward (Eq. (1)) with π(x1|c) set
to P (x1|c); the last inequality comes from the fact that the decision rule π(x1|c) can be optimized to
yield a higher expected reward.

For further illustration of the dominance relation, we relate two policy scopes S =
{〈X1, {C}〉, 〈X2, {X1}〉} and S ′ = {〈X2, {C}〉} through the following derivation,

µ∗S =
∑

y,x,c
yPx(y, c)π(x1|c)π(x2|x1) by Eq. (1) (19)

=
∑

y,x,c
yPx2

(y, c)π(x1|c)π(x2|x1) Rule 3 of do-calculus (20)

=
∑

y,x2,c
yPx2(y, c)

∑
x1

π(x1|c)π(x2|x1) algebra (21)

There exists a probability mapping π′ that can listen to C (while preserving the equality),

=
∑

y,x2,c
yPx2(y, c)

∑
x1

π(x1|c)π′(x2|x1, c) by construction (22)

A-1



∅ {〈X1, ∅〉} {〈X1, {C}〉}

{〈X2, ∅〉} {〈X1, ∅〉
〈X2, ∅〉}

{〈X1, {C}〉
〈X2, ∅〉}

{〈X2, {C}〉} {〈X1, ∅〉
〈X2, {C}〉}

{〈X1, {C}〉
〈X2, {C}〉}

{〈X2, {X1}〉}
{〈X1, ∅〉
〈X2, {X1}〉}

{〈X1, {C}〉
〈X2, {X1}〉}

{〈X2, {C, X1}〉}
{〈X1, ∅〉

〈X2, {C, X1}〉}
{〈X1, {C}〉
〈X2, {C, X1}〉}

Eq. (13)

Eq. (19)

(a) dominance

∅ {〈X1, ∅〉} {〈X1, {C}〉}

{〈X2, ∅〉} {〈X1, ∅〉
〈X2, ∅〉}

{〈X1, {C}〉
〈X2, ∅〉}

{〈X2, {C}〉} {〈X1, ∅〉
〈X2, {C}〉}

{〈X1, {C}〉
〈X2, {C}〉}

{〈X2, {X1}〉}
{〈X1, ∅〉
〈X2, {X1}〉}

{〈X1, {C}〉
〈X2, {X1}〉}

{〈X2, {C, X1}〉}
{〈X1, ∅〉

〈X2, {C, X1}〉}
{〈X1, {C}〉
〈X2, {C, X1}〉}

(b) subsumption

Figure 9: All 15 mixed policy scopes and their relationships in terms of two dimensions: (a) maximum
achievable expected rewards and (b) policy subsumption. (a) Blue edges Sα → Sβ correspond to
µ∗Sα ≤ µ

∗
Sβ with gray dotted edges the equivalence of their maximum achievable expected rewards,

(b) red solid edges Sα → Sβ imply Sα ⊂ Sβ . Policy scopes are located based on interventions on
X2 (vertical) and on X1 (horizontal). Also, their positions are preserved to facilitate corresponding
comparisons.

=
∑

c

∑
x1

π(x1|c)
∑

y,x2

yPx2(y, c)π
′(x2|x1, c) algebra (23)

There exists a value x1 for each c that can maximize the expression. Let x∗1 be a function mapping
from c to such value of X1. Then,

≤
∑

y,x2,c
yPx2(y, c)π

′(x2|x∗1(c), c) by definition (24)

Since x∗1(c) is determined by c, there exists π(x2|c) such that

=
∑

y,x2,c
yPx2

(y, c)π(x2|c) by construction (25)

≤ µ∗S′ by Eq. (1). (26)

Therefore, µ∗{〈X1,{C}〉,〈X2,{X1}〉} ≤ µ
∗
{〈X2,{C}〉}. It is not immediately obvious how we can formally

derive such inequalities between two optimal expected rewards for arbitrary environments. Through-
out the paper, we build graphical and algorithmic criteria that tell whether one policy can dominate
another.

After all, {〈X1, {C}〉} (top-right in Fig. 9a) dominates its neighbors and can attain optimality.
Sometimes, a set of policies forming an equivalence class can achieve optimality, i.e.,

{{〈X2, {C}〉}, {〈X1, ∅〉, 〈X2, {C}〉}, {〈X1, {C}〉, 〈X2, {C}〉}, {〈X2, {C,X1}〉},
{〈X1, ∅〉, 〈X2, {C,X1}〉}, {〈X1, {C}〉, 〈X2, {C,X1}〉}}.

Now, we turn our attention to the subsumption relation as shown in Fig. 9b. We first note that
the construction of this diagram is based on the scope of the given policy (Def. 1), as defined
in the paper, namely, the set of actions (before conditioning bar) and the corresponding context
(after the conditioning bar). The construction is graph-insensitive, but will play a key role when
combined with the analysis of dominance. Specifically, if a policy scope does not have an incoming
red edge from other policy scope in its equivalence class, the policy scope is non-redundant. To
better understand how the dominance and subsumption dimensions are related, we superimpose both
relations in Fig. 10. The scopes forming an equivalence class are clustered and highlighted within
a gray rectangle, and marked its boundary with black for optimality. For each equivalence class,
there exists one non-redundant scope, highlighted in yellow. For instance, in the aforementioned
equivalence class (the right most equivalence class in Fig. 10), {〈X2, {C}〉} is subsumed by other
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∅

{〈X1, ∅〉}

{〈X1, {C}〉}

{〈X2, ∅〉}

{〈X1, ∅〉
〈X2, ∅〉}

{〈X1, {C}〉
〈X2, ∅〉}

{〈X1, ∅〉
〈X2, {X1}〉}

{〈X2, {X1}〉}

{〈X1, {C}〉
〈X2, {X1}〉}

{〈X2, {C}〉}

{〈X1, ∅〉
〈X2, {C}〉}

{〈X1, {C}〉
〈X2, {C}〉}

{〈X2, {C, X1}〉}

{〈X1, ∅〉
〈X2, {C, X1}〉}

{〈X1, {C}〉
〈X2, {C, X1}〉}

Figure 10: The superimposition of the dominance and subsumption relations of Fig. 1a, which
were individually shown in Figs. 9a and 9b. The equivalence classes are highlighted in gray-shaded
rectangles, policies (EC) that can achieve optimality are in black boundaries, non-redundant policies
are in yellow. Mixed policy scopes satisfying both non-redundancy and optimality are in green.

scopes while maintaining the same optimal reward. In fact, this implies that {〈X2, {C}〉} will
be preferred over its counterparts in the equivalence class given its capability of achieving the
optimality while being the most parsimonious within its class. Comparing whether one policy scope
subsumes the other outside the equivalence class makes less sense since they are not comparable. For
example, {〈X2, {C}〉} subsumes {〈X2, ∅〉} and ∅ through the red arrows, but belongs to a different
equivalence class, so they are non-comparable, one is not preferred over the other. In this example,
we can see through Fig. 10 that there are 7 non-redundant mixed policy scopes (yellow): ∅, {〈X1, ∅〉},
{〈X1, {C}〉}, {〈X2, ∅〉}, {〈X2, {X1}〉}, {〈X1, {C}〉, 〈X2, {X1}〉}, and {〈X2, {C}〉}. Putting this
information together, we can see in Fig. 10 that only {〈X1, {C}〉} and {〈X2, {C}〉} satisfy both
optimality (black boundaries) and non-redundancy (yellow), which are then marked in green.

Once the intelligent agent has access to causal information (e.g., in the form of the causal graph),
it can explore the underlying environment with scopes that can achieve optimal reward efficiently.
We now describe different approaches the agent can take. A standard approach would be taking all
actions (e.g., in this case, X1 and X2) and observing all available contexts (X1 and C), which leads
to the scope {〈X1, {C}〉, 〈X2, {X1,C}〉}. Another approach could be brute-force, where all the 15
different scopes are experimented. A more efficient route would be to avoid redundant policy scopes,
where the agent plays only the 7 non-redundant scopes. Knowing that 5 out of the 7 scopes are no
better than the other 2, the most efficient approach would be to assess those, i.e., {〈X1, {C}〉} and
{〈X2, {C}〉}. We name these approaches as CB, BF, NRO, and POMPS, where the exact meaning of
NRO (Non-Redundant under Optimality) and POMPS (Possibly-Optimal Mixed Policy Scope) will
become clearer through out the paper.

We empirically validate that the use of refined policies leads to a better performance measured. In
particular, we use the cumulative regret (the lower the better), i.e., Tµ∗ −

∑T
t=1 Yt, where T is the

number of time steps (i.e., interactions) and Yt is a random variable for the reward at time t. Further,
we demonstrate that the CB approach cannot achieve the optimal reward in a certain environment,
incurring a linear cumulative regret. The basic experimental setup is, for each time step, the agent
assesses policies using samples from posterior reward distributions (i.e., Thompson sampling) based
on its interaction history, and executes the chosen policy.4 We exemplified next an environment
(structural causal model) compatible with the example discussed above, which will validate the

4Here, we mean a policy by fully-specified decision rules. For instance, there are four discrete policies
corresponding to a strategy π(x1|c) with binary C and X1.
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(d) probability selecting optimal policies

Figure 11: Performance comparison for different approaches (CB, BF, NRO, POMPS). (a,b) Each
line represents cumulative regrets averaged over 100 repetitions (the lower the better), and its shade
represents standard deviation. (c,d) Probability the agent selects the best policies (with CB 0% and
the lines are smoothed with moving average). The figures in the left side highlight the first 2,000 time
steps and ones in the right side the whole 10,000 steps.

rewards, and is unknown by the agent:

M =


C ← UC ⊕ U1

X1 ← U1 ⊕ UX1

X2 ← X1 ⊕ C ⊕ U2 ⊕ UX2

Y ← X2 ⊕ C ⊕ U2 ⊕ UY ,
where the unobserved confounders U1 (between C and X1) and U2 (between X2 and Y ) are fair
coins and each of U ∈ {UX1 ,UX2 ,UC ,UY } is binary and follows P (U = 1) = 0.1.

The corresponding simulation is shown in Fig. 11 reporting two types of plots based on (a,b)
cumulative regrets and (c,d) the probability selecting the optimal policy. It is evident from the
specification that the CB agent cannot optimize its policy to achieve the optimality, regardless of
the number of interactions with the environment. This is demonstrated as a linear cumulative regret
(Figs. 11a and 11b) and 0% probability selecting an optimal policy in Figs. 11c and 11d. The BF
approach is almost equally inefficient up to around 2000 steps, but is still able to find the optimal since
it includes the possible optimal policies, POMPSes. As expected, the performance improves with
the use of smaller number of policies. After all, the CB approach does not guarantee the optimality,
while BF, NRO, POMPS are always guaranteed to converge. Further, the use of only non-redundant
policies by NRO and POMPS helps the agent to converge to the optimal policy faster.

B Preliminaries

We use in the paper classic causal inference results such as do-calculus, which we summarize here.

D-separation We start with the definition of d-separation [44], without a particular consideration
of deterministic relationships.
Definition 6 (d-separation). Two sets of vertices X,Y are said to be d-separated by a another set
Z in a directed acyclic graph G, denoted by (X ⊥⊥ Y | Z)G , if every path P from vertices in X to
vertices in Y are blocked where blockage occurs when one of the following holds:
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1. P contains at least one arrow-emitting node that is in Z, or

2. P contains at least one collider that is outside Z and has no descendant in Z.

Do-calculus Do-calculus [33] is an essential machinery to reason about the equivalence of con-
ditional interventional probabilities induced by any model conforming to a given causal graph.
Do-calculus consists of three rules where each rule ascertains that an equality between two probability
distributions holds if a certain graphical test (separation) holds. The three rules are

R1 (Insertion/deletion of observations): Px(y|z,w) = Px(y|w) if Z ⊥⊥ Y | X,W in GX

R2 (Action/observation exchange): Px(y|z,w) = Px,z(y|w) if Z ⊥⊥ Y | X,W in GXZ

R3 (Insertion/deletion of actions): Px(y|w) = Px,z(y|w) if Z ⊥⊥ Y | X,W in G
XZ(W)

where Z(W) is a subset of Z that is not ancestor of W in GX. For convenience of some of the
proofs, letH = G\X and Q = Px, and consider the following (rewritten) what rules:

R1 (Insertion/deletion of observations): Q(y|z,w) = Q(y|w) if Z ⊥⊥ Y |W inH
R2 (Action/observation exchange): Q(y|z,w) = Qz(y|w) if Z ⊥⊥ Y |W inHZ

R3 (Insertion/deletion of actions): Q(y|w) = Qz(y|w) if Z ⊥⊥ Y |W inH
Z(W)

.

This representation and will help us to highlight the differences between distributions while abstract-
ing away unnecessary details.

C Mixed Policies

Derivation of Expected Reward A derivation for Eq. (1) is shown below with abbreviations: MP,
the definition of marginal probability; CR, the chain rule; R#: rule # of do-calculus; and def: by
definition. Let ≺ be a topological order compatible with Gπ, and let X≺C be {X ∈ X | X ≺ C}.
We may write capital subscripts of a value as lowercase, e.g., cx instead of cX for a value for CX .
With X = X(π), C = C(π), and C− = C\X, we start by writing the expected reward of π,

µπ
.
= Eπ[Y ] def (27)

=
∑
y,x,c−

yPπ(y,x, c
−) MP (28)

=
∑
y,x,c−

yPπ(y|x, c−)Pπ(x, c
−) CR (29)

=
∑
y,x,c−

yP (y|x, c−)Pπ(x, c
−) R1 (30)

=
∑
y,x,c−

yPx(y|c−)Pπ(x, c
−) R2 (31)

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

Pπ(x|x≺x, c−≺x)
∏

C∈C−

Pπ(c|x≺c, c−≺c) CR (32)

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

Pπ(x|cx)
∏

C∈C−

Pπ(c|x≺c, c−≺c) R1 (33)

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

π(x|cx)
∏

C∈C−

Pπ(c|x≺c, c−≺c) def (34)

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

π(x|cx)
∏

C∈C−

P (c|x≺c, c−≺c) R1 (35)

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

π(x|cx)
∏

C∈C−

Px≺c(c|c−≺c) R2 (36)

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

π(x|cx)
∏

C∈C−

Px(c|c−≺c) R3 (37)
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Algorithm 1 Separation of actions and contexts of an MPS
1: function sep-mps(S,G)

input: a mixed policy scope S, a causal graph G
output: an updated, action-context separated mixed policy scope S

2: for X ∈ topological-order(X(S);GS) do
3: Replace CX in S by (

⋃
X′∈CX∩X? CX′) ∪ (CX\X?).

4: return S

=
∑
y,x,c−

yPx(y|c−)
∏
X∈X

π(x|cx)Px(c
−) CR (38)

=
∑
y,x,c−

yPx(y, c
−)
∏
X∈X

π(x|cx), CR (39)

Note that Rule 1 of do-calculus applied to the regime nodes (Eq. (30)) is identical to Rule 2 applied
to X in Eq. (31). The derivation for a subset of X and its contexts follows directly by treating
uninteresting decision rules as natural mechanisms.

Note on Multi-Agent Systems Although the treatment given to mixed policies is framed with
respect to a single agent, its implications to a multi-agent setting is apparent – each action variable can
be considered as an agent where the absence of directed edges among them exhibits their autonomy.
Further, from the multi-agent point of view, the current definition of mixed policy assumes that
each agent has the same ability to sense contextual variables C?. More realistic multi-agent settings
will allow for different sensing capabilities for agents. The results presented in this paper can be
effortlessly generalized to this case, where each agent (or action) is associated with its own set of
contextualizable variables. Another almost immediate extension is for multi-reward settings, e.g.,
where one attempts to optimize Y1 and Y2. Depending on the task, one may focus on a specific reward,
or one can create a new aggregate reward Y = Y1 + Y2 to perform a task over the setting.

D Optimality and Deterministic Mixed Policy

Proposition 1. Given a mixed policy scope, there always exists a deterministic mixed policy, which
is optimal with respect to the given scope.

Proof. Consider an arbitrary optimal policy π ∼ S given an MPS S. Let X = X(π) and C− =
C(π)\X. Given a topological order among X defined over GS such that Xi ≺ Xj if i < j, let
Q′ = Pπ\{X1} where π\X′ denotes a policy π with actions X′ ⊆ X removed. Then,

µπ =
∑

y,x1,c1

yQ′x1
(y, c1)π(x1|c1) =

∑
c1,x1

π(x1|c1)
∑
y

yQ′x1
(y, c1).

If πX1|C1
is not deterministic with respect to c1 where Pπ(c1) = Q′(c1) > 0, there must be at least

two values of x′1 and x′′1 such that

π(x′1|c1)
∑
y

yQ′x′1(y, c1) = π(x′′1 |c1)
∑
y

yQ′x′′1 (y, c1).

Otherwise, if one value is larger than the other, this contradicts the optimality since πX1|C1
can select

the value that yields a larger value than the other. In case of Q′(c1) = 0, the choice of x1 becomes
irrelevant. Hence, we can modify the strategy on a single action to be deterministic for a specific
context. This argument can be sequentially applied to the rest of intervened variables. As a result, one
can elicit a deterministic optimal mixed policy from a given optimal mixed policy. Therefore, there
exists a deterministic mixed policy, which is optimal with respect to the given MPS.

Proposition 2 (Separation of Actions and Contexts). Given an MPS S, there always exists a deter-
ministic mixed policy π ∈ Π such that X(π) and C(π) are disjoint and µπ = µ∗S .
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Proof. Let a mixed policy ρ ∼ S be optimal with respect to S. First, there exists an optimal
deterministic mixed-policy ρ′ equivalent to ρ with respect to the expected reward (Prop. 1). Since
the graph Gρ′ is acyclic, there exists a topological order among X. Consider X ∈ X such that
CX′ ∩X = ∅ for every X ′ ∈ CX ∩X. We can create a new function πX based on ρ′X and ρ′X′ :

πX((cX\{x′}) ∪̇ cX′)
.
= ρ′X(CX\{X ′} = cx\{x′},X ′ = ρ′X′(cX′)).

This can be iteratively applied following the topological order among X to obtain a new deterministic
policy π such that X(π) and C(π) are disjoint without changing the expected reward (see Alg. 1).

E Non-Redundant Mixed Policy

Theorem 1. Let S = {〈X,CX〉}X∈X be an MPS and letH = GS . S is non-redundant if and only
if (i) X ⊆ an(Y )H and (ii) (C 6⊥⊥ Y | CX\{C}) inH\{X}, for every X ∈ X and C ∈ CX .

Proof. (Only if) (i) LetX ∈ X\an(Y )H,Q′ = Pπ\{X} andH′ = Gπ\{X}. First,X ∈ X\an(Y )H′
since intervening on X does not change the descendants of X . Then, Q′x(y|cx) = Q′(y|cx) since
(X ⊥⊥ Y | CX) in H′

X(CX)
= H′

X
(i.e., Rule 3 of do-calculus). Further, Q′x(cx) = Q′(cx) since,

again, Rule 3 that X ⊥⊥ CX inH′
X

as no CX is a descendant of X and nothing is given. Then,

µπ =
∑
y,x,cx

yQ′x(y, cx)π(x|cx) def

=
∑
y,x,cx

yQ′x(y|cx)Q′x(cx)π(x|cx) CR

=
∑
y,x,cx

yQ′(y|cx)Q′(cx)π(x|cx) violation of (i)

=
∑
y,x,cx

yQ′(y, cx)π(x|cx) CR

=
∑
y,cx

yQ′(y, cx)
∑
x

π(x|cx) algebra

=
∑
y

yQ′(y) MP

= µπ\{X} def.

(ii) Let Q = Pπ and Q′ = Pπ\{X} for some π ∼ S and C−X = CX\{C} where C ∈ CX which
violates (ii). LetH′ = GS\{X}. Note that the test inH\{X} is identical to the test inH′\{X} as the
only differences inH andH′ are the parents of X . Then,

µπ =
∑
y,x,cx

yQ′x(y|cx)Q′x(cx)π(x|cx) def, CR

=
∑
y,x,cx

yQ′x(y|c−x )Q′x(cx)π(x|cx) violation of (ii)

=
∑
y,x,cx

yQ′x(y|c−x )Q′x(c|c−x )Q′x(c−x )π(x|cx) CR

=
∑
y,x,c−x

yQ′x(y, c
−
x )
∑
c

Q′x(c|c−x )π(x|cx) CR, algebra

=
∑
y,x,c−x

yQ′x(y, c
−
x )
∑
c

Qx(c|c−x )π(x|cx) R1

=
∑
y,x,c−x

yQ′x(y, c
−
x )
∑
c

Pπ(c|c−x )π(x|cx) R3
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Figure 12: Abstract representation of different minimal edge subgraphs highlighting only a single
group of context variables (omitting directed edges from contexts to action). (a, b) a singleton context
variable can either have a directed or bidirected path towards Y . (c) a subset of group {C1,C2,C3}
are connected via bidirected paths with {C4,C5} having directed paths onto them. (d) bidirected
paths between a subset of group {C1,C2,C3,C4} are shared; directed paths from C7 and C6 to
C4 are shared; the bidirected path between C1 and Y intersects bidirected paths between C1 and
{C2,C3,C4}; finally, the directed path from X to Y is also shared.

=
∑
y,x,c−x

yQ′x(y, c
−
x )π

′′(x|c−x ) see below

= µπ′′ ,

where π′′(x|c−x )
.
=
∑
c Pπ(c|c−x )π(x|c−x , c). Since π properly subsumes π′′, π is redundant.

(If) We show, for an arbitrary MPS S ′ ( S , that we can construct an SCMM∼ G such that a mixed
policy π ∼ S satisfies µπ 6= µπ′ for π′ ( π. Let S ′ and S differ on 〈X,CX〉 (either only a subset
of CX or X itself). We consider a minimal edge subgraphH of GS such that the above conditions
are satisfied for X and CX . The graph is characterized as groups of context variables {Ci

X}i where,
for each group Ci

X , there exists a subset of context variables Ci
X
′ connected via bidirected paths and

each of the rest Ci
X\Ci

X
′ has a directed path towards the subset Ci

X
′. More precisely speaking, there

exists no CX appearing in the (bi)directed paths as non-ends, while the paths in general can intersect.
If the group is a singleton Ci

X = {C}, either a bidirected or directed path towards Y , not passing X ,
exists. Otherwise, a bidirected path exists between C ∈ Ci

X
′ and Y (see Fig. 12 for examples where

squiggly lines represent paths and induced edges are hidden).

We now construct an SCM demonstrating non-redundancy. As illustrated in Fig. 12d, above mentioned
paths can intersect with each other. We consider each bidirected and directed path maintains its
own ‘channel’ where the path in H can be understood as a cable of multiple bits where non-end
variables pass bits to the downstream. This principle is also applied to different groups since the
paths connecting each group to Y can be shared. Let every parentless variable (including UCs and
Ci
X\Ci

X
′) behaves as a fair coin or a vector of independent fair coins if it involves in multiple paths

(e.g., Z in Fig. 12d has 6 bits for every pair among {C1,C2,C3,C4}). We design the function for
every C ∈ Ci

X
′ and X to be the bit-parity of its parents (i.e., all channels incoming to C) and the

mechanism for Y is similarly designed except that it takes its complement. Information of every
fair coin is counted twice at X and canceled out (i.e., bit parity) except the one involved between
the group and Y (e.g., one between C1 and Y in every example in Fig. 12) which will be canceled
out at Y . Then, the expected reward for π becomes 1.0 as every bit-parity is counted twice and
complemented at Y . But any π′, whose X does not listen to CX as a whole, makes its expected
reward 0.5.

Proposition 6. Given an MPS S, every intermediate MPS nr-mps is valid MPS.

Proof. Let S be an intermediate MPS at a point of time in the execution of nr-mps. Since the
algorithm removes a subset of X(S) and that of contexts CX for some X ∈ X(S), the condition (i)
of the definition of MPS is always satisfied. Hence, we focus on the condition (ii), the acyclicity of an
intermediate MPS. The given valid MPS is changed through Line 2, 5, and 8. Removing a context at
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Algorithm 2 Non-Redundant Mixed Policy Scope S
1: function NR-MPS(G,Y ,S)

input: a mixed policy scope S, a causal graph G
output: an updated, non-redundant mixed policy scope S

2: S ← S\(X\an(Y )GS ).
3: for X ∈ reverse-order(X(S);GS) do
4: if X 6∈ an(Y )GS then:
5: S ← S\{X} and continue.
6: for C ∈ CX do
7: if (C ⊥⊥ Y | CX\{C}) in GS\{X} then
8: S ← (S\{X}) ∪ {〈X,CX\{C}〉}.
9: return S.

Y

H

H′ ⊂ G

×

(a) Schematic for Line 2

H
X

H′ ⊂ G

×

(b) Schematic for Line 5

Figure 13: Schematic diagrams for induced graphs after (a) Line 2 and (b) Line 5 where each induced
graph is partitioned into two parts by (non-)ancestors of Y and (non-)descendants of X , respectively.

Line 8 from S results in an induced graph GS′ which is an edge subgraph of GS where S ′ is an MPS
after Line 8. Hence, Line 8 does not create a cycle from acyclic GS . Through Lines 2 and 8, a subset
of or an element of X(S) is removed. Not only are its induced edges (i.e., C → X for C ∈ CX )
removed, but also its original parents in G are restored. Since the removal of incoming edges onto
X does not create a cyclic path, we examine directed edges from pa(X)G to X with respect to the
acyclicity of the updated induced graph after Line 2 and 8.

(Line 2) Let S and S ′ be MPSes before and after removing X′ ⊆ an(Y )GS at Line 2. If X′ = ∅,
then done. Otherwise, let H be GS [An(Y )GS ] the induced graph restricted to the ancestors of Y,
which is the same after the removal, GS′ [An(Y )GS′ ]. Since GS is acyclic, its subgraphH is acyclic,
as well. LetH′ be GS′\V(H), the vertex-induced subgraph of GS′ by excluding the ancestors of Y.
By definition of S ′, there is no X ∈ X(S ′) inH′ and every directed edge inH′ is those in G. That is
H′ itself is acyclic. Hence, we only need to check whether there can be a cycle formed acrossH and
H′. By definition of S ′, there cannot be a directed edge from a vertex in H′ to other vertex in H′.
Therefore, it is impossible for a cycle to exist in GS′ .
(Line 8) Let X be the action to be removed. Let H′ = GS′ [De(X)GS′ ] and H = GS′\V(H′). H is
acyclic since it is the same as GS\V(H′), the subgraph of acyclic GS . By construction, there exists
no X ′ ∈ X(S ′) other than X inH′ andH′ is a vertex-induced subgraph of G. Hence,H′ is acyclic,
too. By definition, there exists no directed edge from V(H′) to V(H) in GS′ . Consequently, GS′ is
acyclic.

Given Prop. 6, we focus on the uniqueness and maximal non-redundancy of a returned MPS from
nr-mps.

Theorem 4. Given an MPS S, nr-mps returns a unique, maximal non-redundant MPS of S.

Proof. The algorithm refines a given mixed policy scope (MPS) S by iterating over X(S) and C(S)
once. We examine whether the dependency that holds at the testing time is still valid with respect
to the returned MPS, which we will be denoted by, S⊥. Let S ′ be an intermediate MPS when an
arbitrary X is under examination (Line 4). X ∈ an(Y ) in GS′ is preserved in GS⊥ because the later
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tests are irrelevant as they are all non-successors of X while the ancestrality is only relevant to its
successors.

Next consider examining C ∈ CX for some X where now S ′ is the MPS at Line 7. Consider a trail
(d-connection path) ρ betweenC and Y in GS′ . We restrict our attention to a collider-minimal, shortest
path. Every collider W in the path has a directed path towards Y through W  Ci → X  Y
where Ci ∈ CX by the testing criteria and W  Ci can be of zero length. Let Gρ ⊆ GS′ be the path
graph together with directed paths between colliders and conditionals. Let S ′′ be the MPS at the end
of testing every Cj ∈ CX . We show that (C 6⊥⊥ Y | C′′X) in GS′′\{X} holds true (with C′′X as in
S ′′). Let Ci be the subset of CX that associates with the colliders in the path. Since every Ci ∈ Ci

will have a back-door path to Y (by concatenating a directed path between Ci and W and the subpath
of ρ between W and Y ) given Ci\{Ci}, Ci is the subset of C′′X . Hence, the result follows (for an
illustrative example, please see Fig. 14).

Now we investigate whether the path ρ between C and Y is still valid in GS⊥ given C⊥X . Specifically,
we would like to ensure that the edges in the path are intact throughout the changes made by the
algorithm. The removal of X ′ ∈ X(S)6�X may affect the parents of X ′ and the removal of C ′ ∈ CX′

affects C ′ → X ′. That is, for both cases, we investigate whether C ′ → X ′ in ρ is intact at the end of
the algorithm. We first state two claims.

Claim 1. X ′ has a directed path to Y in Gρ.

Claim 2. C ′ 6⊥⊥ Y in Gρ\{X ′} demonstrates the existence of a collider-free d-connection φ, which
is disjoint with CX′\{C ′}.

The directed path between X ′ and Y will be valid in GS⊥ if every C ′′ → X ′′ appeared in the path is
intact, which delegates its validity to the bottom-most X ′′ ∈ X(S) 6�X . C ′ ∈ CX′ will be dependent
to Y given CX′\{C ′} as no CX′\{C ′} exists in Gρ. Hence, by tracing back the validity of each
policy-induced edge in Gρ, we conclude that every policy-induced edge is intact, and, thus, Gρ ⊆ GS⊥
and C ′ ∈ C⊥X .

Now we prove the two claims in the above proof.

Claim 1. X ′ has a directed path to Y in Gρ.

Proof. Let • be an unspecified edge mark representing either arrow or tail and a squiggly edge
represents a path. An abstract representation for the path ρ can be one of the following two forms
C
×• • C ′→X ′ ×• Y or C

×• • X ′←C ′ ×• Y with × represents that the path may have colliders.
X ′ has a directed path to (i) C, (ii) Y , or (iii) some Ca ∈ CX\{C} via a collider W (which can be
X ′ itself) in the path. Then, a directed path can be of the form: (i) X ′  C → X  Y , (ii) X ′  Y ,
or (iii) X ′  W  Ca → X  Y .

Claim 2. C ′ 6⊥⊥ Y in Gρ\{X ′} demonstrates the existence of a collider-free d-connection φ, which
is disjoint with CX′\{C ′}.

Proof. Similar to the proof for the directed path between X ′ and Y , our abstract representation
informs us that we can consider two subpaths (a) C

×• • C ′ or (b) C ′
×• Y where both avoids

passing through X ′.

For (a), if the subpath does not contain a collider, (a1) C ′ • • C → X  Y is a valid trail signaling
C ′ 6⊥⊥ Y in Gρ\{X ′}. Otherwise, there exists a collider W in the subpath, which uses a shortcut to Y
through Ca ∈ CX\{X}: (a2) C ′ • W  Ca → X  Y .

In case of (a1), C ′′ ∈ CX′\{C ′} cannot appear in between C ′ and C since otherwise it violates the
fact that ρ being the shortest—one can create ρ′ by replacingC . . . C ′′ . . . C ′ → X byC . . . C ′′ → X .
In case of (a2), similarly, C ′′ cannot reside along C ′ • W . In addition, we prove that C ′′ does not
exist in-between W  Ca since otherwise there exists ρ′ which does not require W in the path ρ as
a collider making use of C ′′ → X ′, contradicting the collider-minimality of ρ. In either cases (a1)
and (a2), C → X  Y or Ca → X  Y are C ′′-free otherwise it contradicts the topological order
between X ′ and X .
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CiC Cj

C′

X ′

X

Y

(a)

CiC Cj

C′

X ′

X

Y

2

1

(b)

CiC Cj

C′

X ′

X

Y

(c)

CiC Cj

C′

X ′

X

Y

2

C′′

(d) violating shortestness

CiC Cj

C′

X ′

C′′

X

Y

1

(e) violating minimality

Figure 14: An example illustrating the preservation of a d-connecting path in Alg. 2. If C ′′ ∈ CX′

in 1 (b), C ′′ → X can make the green path shorter, contradicting shortest path. If in 2 (b), the 2nd
collider from C is not required contradicting minimality. Since X ′ is not a successor of X , no C ′′
can appear between the path between X and Y . Colors here do not follow our convention made in
the paper.

In case of (b), either there exists (b1) a path towards Y , C ′ • Y without a collider, or (b2) through a
collider as seen in the case of (a2), where the same proof is applicable. Given (b1), again, if C ′′ exists
in the path, we can shorten ρ by connecting X ′ ← C ′′ while replacing X ′ ← C ′ • C ′′, which
violates ρ being the shortest.

Hence, the result follows.

E.1 Non-Redundancy under Optimality

Derivations for the Redundancy of Examples We demonstrate the redundancy for Figs. 5b to 5d.
We may employ ‘≤’ to highlight that fixing operation can improve the expected reward although,
given the optimality of the left hand side, it becomes ‘=’. We present a derivation for Fig. 5b showing
that C3 is non-informative.

µπ =
∑
y,x,c

yQ(y|x, c)Q(x, c) MP,CR (40)

=
∑
y,x,c

yQ(y|x, c1, c2)Q(x, c) R1 (41)

=
∑
y,x,c

yQ′x(y|c1, c2)Q(x, c) R1,R2 (42)

=
∑
y,x,c

yQ′x(y|c1, c2)Q(x1|c3, c1)Q(x2|c3, c2)Q(c) CR,R1 (43)

=
∑

y,x,c1,c2

yQ′x(y|c1, c2)Q(c1, c2)
∑
c3

Q(x1|c3, c1)Q(x2|c3, c2)Q(c3) MP,CR (44)
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=
∑
c3

Q(c3)
∑

y,x,c1,c2

yQ′x(y|c1, c2)Q(c1, c2)Q(x1|c3, c1)Q(x2|c3, c2) algebra (45)

≤
∑

y,x,c1,c2

yQ′x(y|c1, c2)Q(c1, c2)Q(x1|c∗3, c1)Q(x2|c∗3, c2) def (46)

=
∑

y,x,c1,c2

yQ′x(y|c1, c2)Q(c1, c2)π
′(x1|c1)π′(x2|c2) def (47)

=
∑

y,x,c1,c2

yQ′x(y|c1, c2)Q′x(c1, c2)π′(x1|c1)π′(x2|c2) R1,R3 (48)

=
∑

y,x,c1,c2

yQ′x(y, c1, c2)π
′(x1|c1)π′(x2|c2) CR (49)

where c∗3 ∈ XC3
is the value maximizing the inner sum.

The derivation for Fig. 5c is given that C2 is non-informative.

µπ =
∑
y,x,c

yQ(y|x, c)Q(x, c) def (50)

=
∑
y,x,c

yQ(y|x, c1)Q(x, c) R1 (51)

=
∑
y,x,c

yQ′x(y|c1)Q(x, c) R1,R2 (52)

=
∑
y,x,c

yQ′x(y|c1)Q(c1)Q(c2|c1)Q(x1|c)Q(x2|c) CR (53)

=
∑
y,x,c

yQ′x(y|c1)Q′x(c1)Q(c2|c1)Q(x1|c)Q(x2|c) R1,R3 (54)

=
∑
y,x,c

yQ′x(y, c1)Q(c2|c1)Q(x1|c)Q(x2|c) CR (55)

=
∑
y,x,c1

yQ′x(y, c1)
∑
c2

Q(c2|c1)Q(x1|c)Q(x2|c) algebra (56)

=
∑
c1

∑
c2

Q(c2|c1)
∑
y,x

yQ′x(y, c1)Q(x1|c)Q(x2|c) algebra (57)

≤
∑
c1

∑
y,x

yQ′x(y, c1)Q(x1|c1, c∗2(c1))Q(x2|c1, c∗2(c1)) def (58)

=
∑
y,x,c1

yQ′x(y, c1)π
′(x1|c1)π′(x2|c1) def (59)

The derivation for Fig. 5d is as follows. Let Q′ = Pπ\{X1,X2}.

µπ =
∑

y,x12,c2

yQ(y|x12, c2)Q(x12, c2) MP,CR (60)

=
∑

y,x12,c2

yQ′x12
(y|c2)Q(x12, c2) R1,R2 (61)

=
∑

y,x12,c2

yQ′x12
(y|c2)

∑
x3

Q(x, c2) MP (62)

=
∑

y,x12,c2

yQ′x12
(y|c2)

∑
x3

Q(c2)Q(x3|c2)Q(x1|x3, c2)Q(x2|x3, c2,x1) CR (63)

=
∑

y,x12,c2

yQ′x12
(y|c2)Q′x12

(c2)
∑
x3

Q(x3|c2)Q(x1|x3, c2)Q(x2|x3, c2) R2,R3 (64)

=
∑

y,x12,c2

yQ′x12
(y, c2)

∑
x3

Q(x3|c2)Q(x1|x3, c2)Q(x2|x3, c2) CR (65)
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=
∑
c2

∑
x3

Q(x3|c2)
∑
y,x12

yQ′x12
(y, c2)Q(x1|x3, c2)Q(x2|x3, c2) algebra (66)

≤
∑

y,x12,c2

yQ′x12
(y, c2)Q(x1|x∗3(c2), c2)Q(x2|x∗3(c2), c2) def (67)

=
∑

y,x12,c2

yQ′x12
(y, c2)π

′(x1|c2)π′(x2|c2) def (68)

Proofs and Additional Characterizations
Lemma 1. Given an MPS S, which satisfies non-redundancy (Thm. 1), let X′ ⊆ X(S), actions of
interest, C′ ( CX′\X′. non-action contexts of interest. If there exists a subset of exogenous variables
U′ in GS , a subset of endogenous variables Z in GS that disjoints with C′ ∪̇ X′ and subsumes
CX′\(C′ ∪̇ X′), and an order ≺ over V′

.
= C′ ∪̇ X′ ∪̇ Z such that

1. (Y ⊥⊥ πX′ | dX′ ∪̇ C′e)GS ,
2. (C ⊥⊥ πX′≺C

,Z≺C ,U′ | d(X′ ∪̇ C′)≺Ce)GS for every C ∈ C′, and
3. V′≺X is disjoint with de(X)GS and subsumes pa(X)GS for every X ∈ X′,

then, the expected reward for π, a deterministic policy optimal with respect to S, can be written as

µπ =
∑
y,c′,x′

yQ′x′(y, c
′)
∑
u′,z

Q(u′)
∏
Z∈Z

Q(z|v′≺z,u′)
∏
X∈X′

π(x|cx). (3)

Proof. We derive the equality using the definitions, axioms of probability, and the given conditions.

µπ =
∑
y

yQ(y) def (69)

=
∑
y,c′,x′

yQ(y, c′,x′) MP (70)

=
∑
y,c′,x′

yQ(y|c′,x′)Q(c′,x′) CR (71)

The first condition can be viewed as both (i) rule 1 of do-calculus with respect to the regime nodes
πX′ and (ii) rule 2 of do-calculus with respect to X′. Then,

=
∑
y,c′,x′

yQ′x′(y|c′)Q(c′,x′) C1 (72)

=
∑
y,c′,x′

yQ′x′(y|c′)
∑
z,u′

Q(c′,x′, z,u′) MP (73)

=
∑
y,c′,x′

yQ′x′(y|c′)
∑
z,u′

∏
C∈C′

Q(c|v′≺c,u′)Q(u′)
∏

V ∈X′∪Z

Q(v|v′≺v,u′) CR (74)

The second condition corresponds to (i) rule 1 for Z≺C and U′ and (ii) rule 2 for X′≺C ,

=
∑
y,c′,x′

yQ′x′(y|c′)
∏
C∈C′

Q′(c|x′≺c, c′≺c)
∑
z,u′

Q(u′)
∏

V ∈X′∪Z

Q(v|v′≺v,u′) C2 (75)

=
∑
y,c′,x′

yQ′x′(y|c′)
∏
C∈C′

Q′x′≺c(c|c
′
≺c)

∑
z,u′

Q(u′)
∏

V ∈X′∪Z

Q(v|v′≺v,u′) C2 (76)

=
∑
y,c′,x′

yQ′x′(y|c′)
∏
C∈C′

Q′x′(c|c′≺c)
∑
z,u′

Q(u′)
∏

V ∈X′∪Z

Q(v|v′≺v,u′) R3 (77)

=
∑
y,c′,x′

yQ′x′(y|c′)Q′x′(c′)
∑
z,u′

Q(u′)
∏

V ∈X′∪Z

Q(v|v′≺v,u′) CR (78)

=
∑
y,c′,x′

yQ′x′(y, c
′)
∑
z,u′

Q(u′)
∏
Z∈Z

Q(z|v′≺z,u′)
∏
X∈X′

Q(x|v′≺x,u′) CR (79)
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The third condition ensures that the conditionals for a term Q(x|·) can be refined only to the parents
of X , which is CX ,

=
∑
y,c′,x′

yQ′x′(y, c
′)
∑
z,u′

Q(u′)
∏
Z∈Z

Q(z|v′≺z,u′)
∏
X∈X′

Q(x|cx) C3,R1 (80)

Theorem 2. Let U′, Z, and≺ satisfy Lemma 1. For Z ∈ Z, let VZ be a minimal subset of V′≺Z ∪U′

such that Q(Z | VZ) = Q(Z | V′≺Z ,U′). We define fix(T) with respect to {〈Z,VZ〉}Z∈Z, that is,
with T̂

.
= dTe ∪ {Z ∈ Z | VZ\U′ ⊆ dTe}, fixed(T) is T if T = T̂ and fixed(T̂), otherwise. If

fixed(CX\Z) ⊇ CX for X ∈ X′, then, S ′ .= (S\X′) ∪ {〈X,CX\Z〉}X∈X′ satisfies µ∗S′ = µ∗S .

Proof. Let Q = Pπ and Q′ = Pπ\X′ .

µπ =
∑
y,c′,x′

yQ′x′(y, c
′)
∑
z,u′

Q(u′)
∏
Z∈Z

Q(z|v′≺z,u′)
∏
X∈X′

Q(x|cx) Lemma 1

=
∑
y,c′,x′

yQ′x′(y, c
′)
∑
z,u′

Q(u′)
∏
Z∈Z

Q(z|vz)
∏
X∈X′

Q(x|cx\z, cx ∩ z) def

=
∑
u′

Q(u′)
(∑
y,c′,x′

yQ′x′(y, c
′)
∑

z

∏
Z∈Z

Q(z|vz)
∏
X∈X′

Q(x|cx\z, cx ∩ z)
)

algebra

Choose u′∗ maximizing the term in the parentheses (note that VZ may intersect U′),

≤
∑
y,c′,x′

yQ′x′(y, c
′)
∑

z

∏
Z∈Z

Q(z|vz\U′, (VZ ∩ u′∗))
∏
X∈X′

Q(x|cx\z, cx ∩ z) def

Take Z1 ∈ Z, the first element among Z with respect to ≺.

=
∑
y,c′,x′

yQ′x′(y, c
′)
∑
z1

Q(z1|vz1\U′, (VZ1
∩ u′∗))

∑
z\{z1}

∏
Z∈Z\{Z1}

· · ·

Choose z∗1 for each free variable vz1\U′,

≤
∑
y,c′,x′

yQ′x′(y, c
′)
∑

z\{z1}

∏
Z∈Z\{Z1}

Q(z|vz\(U′∪{Z1}), (VZ∩{u′∗, z∗1(vz1\U′,vz1∩u′∗)}))

∏
X∈X′

Q(x|cx\Z, cx∩(z\{Z1}, z∗1(vz1\U′,vz1∩u′∗)))

Consider repeating this procedure for Z = {Z1, . . . ,Zm} (following the order ≺). We will define
z∗i for each free variables and fixed variables within vzi . For readability, we define functions for z∗i
recursively as

z∗1(·) = z∗1(vz1\U′,vz1 ∩ u′∗) base case

z∗i (·) = z∗i (vzi\(U′ ∪ Z<i),vzi ∩ (u′∗ ∪ {z∗j (·)}i−1j=1)) for i > 1

Then,

µπ ≤
∑
y,c′,x′

yQ′x′(y, c
′)
∏
X∈X′

Q(x|cx\Z, cx ∩ {z∗i (·)}mi=1).

We want to ensure that cx ∩ {z∗i (·)}mi=1 is a function of cx\Z. By the construction, we can examine
the dependence structure defined by the conditionals specified in terms Q(Z|·). Further, we can
utilize the deterministic mechanisms of X(S). If the values for CX ∩ Z can be determined from the
value of CX\Z, then, for some π′,

µπ ≤
∑
y,c′,x′

yQ′x′(y, c
′)
∏
X∈X′

π′(x|cx\Z).

This completes the proof.
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Figure 15: A more involved example for redundancies in a mixed policy scope
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Figure 16: (a) a dependency specified Q(Z|·) terms with additional ‘implying’ relationships (directed
dashed edges onto X1 and X3) and exogenous variables; (b) X1 requires to fix C2 given C1 (blue
for given) where an unknown u∗2 can be marginally fixed and c∗2(c1,u

∗
2) can be inferred (green for

inferred); (c) X2 requires both C2 and C3 to be fixed where they can be sequentially inferred where
X1 is implied by given c1 and inferred c∗2(c1,u

∗
2). Results for X3 and X4 are similar to X1 and X2.

An example Fig. 15 is given accompanied with a derivation below. Consider an order of ≺=
〈C1,C4,C2,C5,X1,X3,C3,C6,X2,X4〉.

µπ

=
∑
y,x,c14

yQ(y|x, c14)Q(x, c14)

=
∑
y,x,c14

yQ′x(y|c14)Q(x, c14)

=
∑
y,x,c14

yQ′x(y|c14)
∑

c2356,u
′

Q(c2356,x, c14,u
′)

=
∑
y,x,c14

yQ′x(y|c14)
∑

c2356,u
′

Q(u′)Q(c14)Q(c2|c1,u2)Q(c5|c4,u5)Q(x1|c12)

Q(x3|c45)Q(c3|c2,x1,u3)Q(c6|c5,x3,u6)Q(x2|c123)Q(x4|c456) CR,R1

=
∑
y,x,c14

yQ′x(y, c14)
∑

c2356,u
′

Q(u′)Q(c2|c1,u2)Q(c5|c4,u5)Q(x1|c12)

Q(x3|c45)Q(c3|c2,x1,u3)Q(c6|c5,x3,u6)Q(x2|c123)Q(x4|c456) R3,CR

=
∑

c2356,u
′

Q(u′)Q(c2|c1,u2)Q(c5|c4,u5)Q(c3|c2,x1,u3)Q(c6|c5,x3,u6)︸ ︷︷ ︸
defines dependency∑

y,x,c14

yQ′x(y, c14)Q(x1|c1, c2︸︷︷︸
to fix

)Q(x2|c1, c23︸︷︷︸
to fix

)Q(x3|c4, c5︸︷︷︸
to fix

)Q(x4|c4, c56︸︷︷︸
to fix

) R1

Please see Fig. 16 how values can be properly fixed. Then,

≤
∑
y,x,c14

yQ′x(y, c14)π
′(x1|c1)π′(x2|c1)π′(x3|c4)π′(x4|c4)
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Remark 1. S ′ = {〈X1, {C1}〉, 〈X2, {C1}〉, 〈X3, {C4}〉, 〈X4, {C4}〉} is non-redundant under opti-
mality.

Proof. Let UCs between Y and C1 and C4 be U1 and U4 where each one is two-bit fair coins. Let
X be binary variables. Let C1 and C4 copy U1 and U4, and Y take one minus the bit parity of four
bits of X and the four bits of {U1,U4}. Hence, only when X1, X2, X3, and X4 pass the matching
information, the expected reward becomes 1. Otherwise, the expected reward falls down to 0.5.

Even when C2,C3,C5,C6 are all confounded in Fig. 16, we can similarly elicit the same result as
UCs affecting those removables are marginally fixable.

F A Partial Order over Mixed Policies and Possible-Optimality

Theorem 3. Given an MPS S, let S ′ 6= S be an MPS with X(S) ⊆ X(S ′) such that H′′ the
union of induced graphs GS ∪ GS′ is acyclic. Let X′ be actions that the MPSes disagree on, i.e.,
(X(S ′)\X(S))∪{X ∈ X(S) | C′X 6= CX}, and (invalid) MPS S ′′ .= {〈X, pa(X)H′′∪UX〉}X∈X′ .
µ∗S′′ = µ∗S′ can be elicited by Thm. 2, then, µ∗S ≤ µ∗S′ .

Proof. The functions for endogenous variables as in the definition of SCM are compatible with those
decision rules employed in the definition of mixed policy. Further, treating non-contextualizable
variables as if they are contextualizable (C?) has no effect on the derivation. Hence, the superimpo-
sition of the two induced graphs resulting in an directed acyclic graph corresponds to a temporary,
invalid MPS S ′′ induced graph. Since more or the same contexts are used for S ′′ than both S and S ′,
µ∗S ≤ µ∗S′′ and µ∗S′ ≤ µ∗S′′ . If we elicit µ∗S′′ ≤ µ∗S′ , we can conclude that µ∗S ≤ µ∗S′′ = µ∗S′ .

We present an example for µ∗S ≤ µ∗S′ where Fig. 7a and Fig. 7b present GS and GS′ , respectively.

µS′′ =
∑

y,c,x,ux

yPx(y|c)Q(c1)Q(ux1 |c1)Q(ux2 |c1,ux1)Q(x1|c1,ux)Q(c2|x1, c1,ux)Q(x2|x1, c,ux)

=
∑

y,c,x,ux

yPx(y|c)Q(c1)Q(ux1
|c1)Q(ux2

|c1,ux1
)Q(x1|c1,ux1

)Q(c2|x1, c1)Q(x2|c,ux2
)

=
∑

y,c,x,ux

yPx(y|c)Qx(c1)Q(ux1
|c1)Q(ux2

|c1,ux1
)Q(x1|c1,ux1

)Qx1
(c2|c1)Q(x2|c,ux2

)

=
∑

y,c,x,ux

yPx(y|c)Qx(c1)Q(ux1 |c1)Q(ux2 |c1,ux1)Q(x1|c1,ux1)Qx(c2|c1)Q(x2|c,ux2)

=
∑

y,c,x,ux

yPx(y, c)Q(ux1
|c1)Q(ux2

|c1,ux1
)Q(x1|c1,ux1

)Q(x2|c,ux2
)

≤
∑

y,c,x,ux2

yPx(y, c)Q(ux2
|c1,u∗x1

(c1))Q(x1|c1,u∗x1
(c1))Q(x2|c,ux2

)

=
∑

y,c,x,ux2

yPx(y, c)Q(ux2
|c1,u∗x1

(c1))π
′(x1|c1)Q(x2|c,ux2

)

≤
∑
y,c,x

yPx(y, c)π
′(x1|c1)Q(x2|c,u∗x2

(c1))

=
∑
y,c,x

yPx(y, c)π
′(x1|c1)π′(x2|c)

A variant of the setting used in Figs. 7a to 7c where non-contextualizable variable W affects both X1

and C1 with the bidirected edge in X1 and C1 removed from the setting. In such case, W ⊥⊥ UX can
be exploited to show that X2 does not need to observe C1. The implication of this example is that
when we have to deal with a more setting where contextualizable variables are defined on a per-action
basis.

µS′′ =
∑

y,c,x,w,ux

yPx(y|c)Q(c1)Q(w|c1)Q(ux|c1,w)Q(x1|c1,ux,w)Q(c2|x1, c1,ux,w)Q(x2|x1, c,ux,w)
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W
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Figure 17: A variant of the setting used in Figs. 7a to 7c where non-contextualizable variable W
affects both X1 and C1 with the bidirected edge in X1 and C1 removed from the setting.

=
∑

y,c,x,w,ux

yPx(y|c)Q(c1)Q(w|c1)Q(ux)Q(x1|c1,ux1
,w)Q(c2|x1, c1)Q(x2|c2,ux2

)

=
∑

y,c,x,w,ux

yPx(y, c)Q(w|c1)Q(ux)Q(x1|c1,ux1 ,w)Q(x2|c2,ux2)

≤
∑

y,c,x,ux

yPx(y, c)Q(ux)Q(x1|c1,ux1
,w∗(c1))Q(x2|c2,ux2

)

≤
∑
y,c,x

yPx(y, c)Q(x1|c1,u∗x1
,w∗(c1))Q(x2|c2,u∗x2

)

≤
∑
y,c,x

yPx(y, c)π
′(x1|c1)π′(x2|c2)

Proposition 5. Given 〈G,Y ,X?,C?〉, let X′
.
= {X ∈ X? | de(X)G ∩ (C? ∪ {Y }) 6= ∅}, X′′

.
=

de(Y )GX′ ∩X′, and Z
.
= de(Y )G

X′′
. The POMPSes for 〈G,Y ,X?,C?〉 are the same as those for

〈G\Z,Y ,X′,C?\Z\X′′〉.

Proof. Consider a POMPS S for 〈G,Y ,X?,C?〉. LetH = GS . By definition, X(S) ⊆ an(Y )H and,
hence, CX ⊂ an(Y )H for every X ∈ X(S).
(1. a step to 〈G,Y ,X′,C?〉): First, we justify the reduction of X?. Consider X ∈ X? having no C?

or Y as descendants (exclusive) in G. It is impossible for X to become an ancestor of Y since none
of its descendant can become a context for other X ′ ∈ an(Y )H. Further, due to the action-context
separation (Prop. 2) X as an action cannot be simultaneously a context for other X ′. Thus, we can
exclude actionable variables that is not an ancestor of other contextualizable variables or Y . Hence,
X′ = {X ∈ X? | de(X)G ∩ (C? ∪ {Y }) 6= ∅} is the subset of X? that can become an action in
POMPS.

(2. a step to 〈G,Y ,X′,C?\Z〉): Next, we explain the reduction of C? focusing on removing Z. Any
C ∈ C? that is a descendant of Y without any X′ present in the directed path from Y to C cannot
become an(Y )H due to an induced cycle caused by C → X , X ∈ an(Y )H, and Y ∈ an(C)H.
Hence, contextualizable variables that cannot change their descendant relationships with Y , i.e.,
de(Y )G

X′
∩ C? are not contextualizable. With X′′ = de(Y )GX′ ∩ X′ (action variables that are

descendants of Y with no other action variables in between), we can elicit de(Y )G
X′
∩ C? =

de(Y )G
X′′
∩C?. Hence, C? can be reduced to C?\Z where Z = de(Y )G

X′′
.

(3. a step to 〈G\Z,Y ,X′,C?\X′′\Z〉): Finally, we examine eliminating Z from the graph. Since
Z can only be descendant of Y , the expected reward of any valid MPS in the setting is free from
the influence of the mechanism changes for Z. Hence, the removal of Z does not affect the reward
landscape among the MPSes. However, once if Z is removed from the setting, then X′′ is no longer
descendant of Y in the resulting setting, and the constraint that de(X′′)G\X′′ cannot become a
context without excluding them from descendants of Y will be lifted. That is, the new setting
induces more MPSes which is not valid in the original setting. We claim that removing X′′ from the
contextualizable variables is sufficient. Any MPSes valid in the new setting but invalid in the original
setting are those without a proper intervention on a subset of X′ that would otherwise properly break
the cyclicity (the reason for invalidity). By the way, without intervening them, they cannot become
POMPSes in the new setting since, simply, intervening on X′′ leads to a better policy scope, thus, they
are indeed non-POMPSes. As a consequence, any POMPS in the new setting satisfies the constraint
and is a valid POMPS in the original setting (vice versa).
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